Cargando…
A heterogeneous multi-modal medical data fusion framework supporting hybrid data exploration
Industry 4.0 era has witnessed that more and more high-tech and precise devices are applied into medical field to provide better services. Besides EMRs, medical data include a large amount of unstructured data such as X-rays, MRI scans, CT scans and PET scans, which is still continually increasing....
Autores principales: | Zhang, Yong, Sheng, Ming, Liu, Xingyue, Wang, Ruoyu, Lin, Weihang, Ren, Peng, Wang, Xia, Zhao, Enlai, Song, Wenchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417071/ https://www.ncbi.nlm.nih.gov/pubmed/36039096 http://dx.doi.org/10.1007/s13755-022-00183-x |
Ejemplares similares
-
Multi-modal data fusion based on embeddings
por: Thoma, S
Publicado: (2019) -
A Clustering Algorithm for Multi-Modal Heterogeneous Big Data With Abnormal Data
por: Yan, An, et al.
Publicado: (2021) -
Variational Hybrid Monte Carlo for Efficient Multi-Modal Data Sampling
por: Sun, Shiliang, et al.
Publicado: (2023) -
TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation
por: Li, Qingyun, et al.
Publicado: (2020) -
Smartphone-Based 3D Indoor Pedestrian Positioning through Multi-Modal Data Fusion
por: Zhao, Hongyu, et al.
Publicado: (2019)