Cargando…
Metrology of convex-shaped nanoparticles via soft classification machine learning of TEM images
The shape of nanoparticles is a key performance parameter for many applications, ranging from nanophotonics to nanomedicines. However, the unavoidable shape variations, which occur even in precision-controlled laboratory synthesis, can significantly impact on the interpretation and reproducibility o...
Autores principales: | Wen, Haotian, Xu, Xiaoxue, Cheong, Soshan, Lo, Shen-Chuan, Chen, Jung-Hsuan, Chang, Shery L. Y., Dwyer, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417281/ https://www.ncbi.nlm.nih.gov/pubmed/36132371 http://dx.doi.org/10.1039/d1na00524c |
Ejemplares similares
-
Statistically Representative Metrology of Nanoparticles via Unsupervised Machine Learning of TEM Images
por: Wen, Haotian, et al.
Publicado: (2021) -
Complex
Dispersion of Detonation Nanodiamond Revealed
by Machine Learning Assisted Cryo-TEM and Coarse-Grained Molecular
Dynamics Simulations
por: Kuschnerus, Inga C., et al.
Publicado: (2023) -
Metrology of the LHC dipoles with the Romer machine
por: PhotoLab
Publicado: (1997) -
Machine tool metrology: an industrial handbook
por: Smith, Graham T
Publicado: (2016) -
Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase
por: Wang, Feng, et al.
Publicado: (2019)