Cargando…
Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films
Fe-based superconductors present a large variety of compounds whose physical properties strongly depend on the crystal structure and chemical composition. Among them, the so-called 1111 compounds show the highest critical temperature T(c) in the bulk form. Here we demonstrate the realization of exce...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417295/ https://www.ncbi.nlm.nih.gov/pubmed/36133600 http://dx.doi.org/10.1039/c9na00147f |
_version_ | 1784776680670232576 |
---|---|
author | Kauffmann-Weiss, Sandra Iida, Kazumasa Tarantini, Chiara Boll, Torben Schneider, Reinhard Ohmura, Taito Matsumoto, Takuya Hatano, Takafumi Langer, Marco Meyer, Sven Jaroszynski, Jan Gerthsen, Dagmar Ikuta, Hiroshi Holzapfel, Bernhard Hänisch, Jens |
author_facet | Kauffmann-Weiss, Sandra Iida, Kazumasa Tarantini, Chiara Boll, Torben Schneider, Reinhard Ohmura, Taito Matsumoto, Takuya Hatano, Takafumi Langer, Marco Meyer, Sven Jaroszynski, Jan Gerthsen, Dagmar Ikuta, Hiroshi Holzapfel, Bernhard Hänisch, Jens |
author_sort | Kauffmann-Weiss, Sandra |
collection | PubMed |
description | Fe-based superconductors present a large variety of compounds whose physical properties strongly depend on the crystal structure and chemical composition. Among them, the so-called 1111 compounds show the highest critical temperature T(c) in the bulk form. Here we demonstrate the realization of excellent superconducting properties in NdFeAs(O(1−x)F(x)). We systematically investigated the correlation between the microstructure at the nanoscale and superconductivity in an epitaxial 22 nm NdFeAs(O(1−x)F(x)) thin film on a MgO single crystalline substrate (T(c) = 44.7 K). Atomic resolution analysis of the microstructure by transmission electron microscopy and atom probe tomography identified several defects and other inhomogeneities at the nanoscale that can act as extrinsic pinning centers. X-Ray diffraction and transmission electron microscopy displayed a broad variation of the a-axis lattice parameter either due to a partially strained layer at the interface to the substrate, high local strain at dislocation arrays, mosaicity, or due to composition variation within the film. The electrical transport properties are substantially affected by intrinsic pinning and a matching field corresponding to the film thickness and associated with the Bean–Livingston surface barrier of the surfaces. The thin film showed a self-field critical current density J(c)(4.2 K) of ∼7.6 MA cm(−2) and a record pinning force density of F(p) ≈ 1 TN m(−3) near 35 T for H‖ab at 4.2 K. These investigations highlight the role of the microstructure in fine-tuning and possibly functionalizing the superconductivity of Fe-based superconductors. |
format | Online Article Text |
id | pubmed-9417295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94172952022-09-20 Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films Kauffmann-Weiss, Sandra Iida, Kazumasa Tarantini, Chiara Boll, Torben Schneider, Reinhard Ohmura, Taito Matsumoto, Takuya Hatano, Takafumi Langer, Marco Meyer, Sven Jaroszynski, Jan Gerthsen, Dagmar Ikuta, Hiroshi Holzapfel, Bernhard Hänisch, Jens Nanoscale Adv Chemistry Fe-based superconductors present a large variety of compounds whose physical properties strongly depend on the crystal structure and chemical composition. Among them, the so-called 1111 compounds show the highest critical temperature T(c) in the bulk form. Here we demonstrate the realization of excellent superconducting properties in NdFeAs(O(1−x)F(x)). We systematically investigated the correlation between the microstructure at the nanoscale and superconductivity in an epitaxial 22 nm NdFeAs(O(1−x)F(x)) thin film on a MgO single crystalline substrate (T(c) = 44.7 K). Atomic resolution analysis of the microstructure by transmission electron microscopy and atom probe tomography identified several defects and other inhomogeneities at the nanoscale that can act as extrinsic pinning centers. X-Ray diffraction and transmission electron microscopy displayed a broad variation of the a-axis lattice parameter either due to a partially strained layer at the interface to the substrate, high local strain at dislocation arrays, mosaicity, or due to composition variation within the film. The electrical transport properties are substantially affected by intrinsic pinning and a matching field corresponding to the film thickness and associated with the Bean–Livingston surface barrier of the surfaces. The thin film showed a self-field critical current density J(c)(4.2 K) of ∼7.6 MA cm(−2) and a record pinning force density of F(p) ≈ 1 TN m(−3) near 35 T for H‖ab at 4.2 K. These investigations highlight the role of the microstructure in fine-tuning and possibly functionalizing the superconductivity of Fe-based superconductors. RSC 2019-06-05 /pmc/articles/PMC9417295/ /pubmed/36133600 http://dx.doi.org/10.1039/c9na00147f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Kauffmann-Weiss, Sandra Iida, Kazumasa Tarantini, Chiara Boll, Torben Schneider, Reinhard Ohmura, Taito Matsumoto, Takuya Hatano, Takafumi Langer, Marco Meyer, Sven Jaroszynski, Jan Gerthsen, Dagmar Ikuta, Hiroshi Holzapfel, Bernhard Hänisch, Jens Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title | Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title_full | Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title_fullStr | Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title_full_unstemmed | Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title_short | Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films |
title_sort | microscopic origin of highly enhanced current carrying capabilities of thin ndfeas(o,f) films |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417295/ https://www.ncbi.nlm.nih.gov/pubmed/36133600 http://dx.doi.org/10.1039/c9na00147f |
work_keys_str_mv | AT kauffmannweisssandra microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT iidakazumasa microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT tarantinichiara microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT bolltorben microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT schneiderreinhard microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT ohmurataito microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT matsumototakuya microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT hatanotakafumi microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT langermarco microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT meyersven microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT jaroszynskijan microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT gerthsendagmar microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT ikutahiroshi microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT holzapfelbernhard microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms AT hanischjens microscopicoriginofhighlyenhancedcurrentcarryingcapabilitiesofthinndfeasoffilms |