Cargando…
Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications
Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417322/ https://www.ncbi.nlm.nih.gov/pubmed/36134273 http://dx.doi.org/10.1039/d0na00311e |
_version_ | 1784776686805450752 |
---|---|
author | Ibrahim, Sara Rezk, Marwan Y. Ismail, Mohammed Abdelrahman, Taghrid Sharkawy, Mona Abdellatif, Ahmed Allam, Nageh K. |
author_facet | Ibrahim, Sara Rezk, Marwan Y. Ismail, Mohammed Abdelrahman, Taghrid Sharkawy, Mona Abdellatif, Ahmed Allam, Nageh K. |
author_sort | Ibrahim, Sara |
collection | PubMed |
description | Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release. |
format | Online Article Text |
id | pubmed-9417322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94173222022-09-20 Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications Ibrahim, Sara Rezk, Marwan Y. Ismail, Mohammed Abdelrahman, Taghrid Sharkawy, Mona Abdellatif, Ahmed Allam, Nageh K. Nanoscale Adv Chemistry Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release. RSC 2020-06-08 /pmc/articles/PMC9417322/ /pubmed/36134273 http://dx.doi.org/10.1039/d0na00311e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ibrahim, Sara Rezk, Marwan Y. Ismail, Mohammed Abdelrahman, Taghrid Sharkawy, Mona Abdellatif, Ahmed Allam, Nageh K. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title | Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title_full | Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title_fullStr | Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title_full_unstemmed | Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title_short | Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications |
title_sort | coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (pqq) for biomedical applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417322/ https://www.ncbi.nlm.nih.gov/pubmed/36134273 http://dx.doi.org/10.1039/d0na00311e |
work_keys_str_mv | AT ibrahimsara coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT rezkmarwany coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT ismailmohammed coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT abdelrahmantaghrid coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT sharkawymona coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT abdellatifahmed coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications AT allamnagehk coaxialnanofibersoutperformuniaxialnanofibersfortheloadingandreleaseofpyrroloquinolinequinonepqqforbiomedicalapplications |