Cargando…
Boron nitride aerogels consisting of varied superstructures
As a porous material with a nanoscale skeleton, aerogel serves as a bridge between the nano- and macro-world. The integration of nanostructures into aerogels not only allows the combination of multidimensional features but also implies the possibility of unexpected properties. With great potential i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417323/ https://www.ncbi.nlm.nih.gov/pubmed/36133994 http://dx.doi.org/10.1039/c9na00702d |
Sumario: | As a porous material with a nanoscale skeleton, aerogel serves as a bridge between the nano- and macro-world. The integration of nanostructures into aerogels not only allows the combination of multidimensional features but also implies the possibility of unexpected properties. With great potential in many fields, boron nitride (BN) nanostructures have garnered growing attention and their existence in the aerogel state holds even more promise. However, the existing fabrication routes in the aerogel field, despite their validity and effectiveness, provide no panacea and are challenged by those incompatible with the current preparation toolbox, among which BN stands out. Herein, a multilevel assembly scheme is demonstrated for the elegant fabrication of BN aerogels consisting of varied superstructures, i.e., nanoribbons composed of tiny nanocrystals and nest-like structures tangled by nanofibers, the realization of which via the traditional molecular route or the classic assembly route is rather difficult. Interestingly, the resultant aerogels were found to exhibit great contrast in their hydrophilicity, which could be attributed to the microstructure difference. This study may raise the prospects of BN in energy, environment, bio-applications, etc. It may also give inspirations for the incorporation of other complex structures into aerogels. |
---|