Cargando…

Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures

The development of a strain sensor that can detect tensile strains exceeding 800% has been challenging. The non-conductive stretchable Eco-flex tape has been widely used in strain sensors due to its high elastic limit. In this work, an Eco-flex-based strain sensor that was conductive until occurrenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Pengdong, Zheng, Yi, Li, Kang, Zhao, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417334/
https://www.ncbi.nlm.nih.gov/pubmed/36134381
http://dx.doi.org/10.1039/d1na00817j
Descripción
Sumario:The development of a strain sensor that can detect tensile strains exceeding 800% has been challenging. The non-conductive stretchable Eco-flex tape has been widely used in strain sensors due to its high elastic limit. In this work, an Eco-flex-based strain sensor that was conductive until occurrence of fracture was developed. The silver nanoparticles and carbon nanotubes constituted stretchable conductive paths in the Eco-flex matrix. The maximum tensile strain of this sensor was 867%, and the resistance change rate was higher than 10(4), while the strain resolution was 7.9%. Moreover, the sensor is characterized by segmented logarithmic linearity. This excellent performance was attributed to the ginkgo-like pattern, the patterned strain-coordinating architecture (PSCL), and specific nanocomposites with micro-cracks. The deformation of the architecture and the evolution of the microcracks were studied. In addition, the application of this strain sensor on a wing-shaped aircraft was proposed and its feasibility was demonstrated.