Cargando…
Machine learning-assisted discovery of growth decision elements by relating bacterial population dynamics to environmental diversity
Microorganisms growing in their habitat constitute a complex system. How the individual constituents of the environment contribute to microbial growth remains largely unknown. The present study focused on the contribution of environmental constituents to population dynamics via a high-throughput ass...
Autores principales: | Aida, Honoka, Hashizume, Takamasa, Ashino, Kazuha, Ying, Bei-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417415/ https://www.ncbi.nlm.nih.gov/pubmed/36017903 http://dx.doi.org/10.7554/eLife.76846 |
Ejemplares similares
-
Predicting the decision making chemicals used for bacterial growth
por: Ashino, Kazuha, et al.
Publicado: (2019) -
Machine learning-assisted medium optimization revealed the discriminated strategies for improved production of the foreign and native metabolites
por: Aida, Honoka, et al.
Publicado: (2023) -
Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples
por: Yu, Feiqiao Brian, et al.
Publicado: (2017) -
Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community
por: Mancuso, Christopher P, et al.
Publicado: (2021) -
Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET
por: Keegstra, Johannes M, et al.
Publicado: (2017)