Cargando…
Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module
Traditional image segmentation methods often encounter problems of low segmentation accuracy and being time-consuming when processing complex tooth Computed Tomography (CT) images. This paper proposes an improved segmentation method for tooth CT images. Firstly, the U-Net network is used to construc...
Autores principales: | Tao, Sha, Wang, Zhenfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417771/ https://www.ncbi.nlm.nih.gov/pubmed/36035284 http://dx.doi.org/10.1155/2022/3289663 |
Ejemplares similares
-
U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
por: Wu, Jiawei, et al.
Publicado: (2021) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
por: Ran, Si, et al.
Publicado: (2021) -
WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
por: Zhao, Yawu, et al.
Publicado: (2023) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)