Cargando…

A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors

Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive but formidably challenging. In this study, a facile two-c...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Jian, Zhang, Xin, Zhang, Shuyan, Wang, Zhongjie, Yu, Yejian, Ding, Huajun, Tang, Zhiyuan, Heng, Xiangjun, Wang, Ruiqi, Jing, Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417792/
https://www.ncbi.nlm.nih.gov/pubmed/36132350
http://dx.doi.org/10.1039/d1na00362c
_version_ 1784776801461993472
author Qu, Jian
Zhang, Xin
Zhang, Shuyan
Wang, Zhongjie
Yu, Yejian
Ding, Huajun
Tang, Zhiyuan
Heng, Xiangjun
Wang, Ruiqi
Jing, Su
author_facet Qu, Jian
Zhang, Xin
Zhang, Shuyan
Wang, Zhongjie
Yu, Yejian
Ding, Huajun
Tang, Zhiyuan
Heng, Xiangjun
Wang, Ruiqi
Jing, Su
author_sort Qu, Jian
collection PubMed
description Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive but formidably challenging. In this study, a facile two-component co-crystallization strategy is designed for the first time to obtain N,S-co-doped carbon dots@isophthalic acid (CDs@IPA) and N,S-co-doped carbon dots@melamine (CDs@MA). CDs@IPA and CDs@MA all exhibiting time-dependent evolutive RTP colors from orange via yellow to green over 1 s, especially that the green afterglow time of CDs@IPA can reach 6 s (τ(avg) = 582 ms). Studies show that the time-dependent RTP colors originated from two primary emissive centers, low-energy emission of CDs and high-energy emission of host matrix activated by CDs. Due to their distinguishable RTP colors with differentiated lifetimes, the ratios of two RTP emissive bands changed with time during the decay process, resulting in the continuous RTP colors variation in real-time. This two-component carbon dot-based co-crystallization strategy may open a new avenue for the development of time-dependent afterglow color materials.
format Online
Article
Text
id pubmed-9417792
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94177922022-09-20 A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors Qu, Jian Zhang, Xin Zhang, Shuyan Wang, Zhongjie Yu, Yejian Ding, Huajun Tang, Zhiyuan Heng, Xiangjun Wang, Ruiqi Jing, Su Nanoscale Adv Chemistry Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive but formidably challenging. In this study, a facile two-component co-crystallization strategy is designed for the first time to obtain N,S-co-doped carbon dots@isophthalic acid (CDs@IPA) and N,S-co-doped carbon dots@melamine (CDs@MA). CDs@IPA and CDs@MA all exhibiting time-dependent evolutive RTP colors from orange via yellow to green over 1 s, especially that the green afterglow time of CDs@IPA can reach 6 s (τ(avg) = 582 ms). Studies show that the time-dependent RTP colors originated from two primary emissive centers, low-energy emission of CDs and high-energy emission of host matrix activated by CDs. Due to their distinguishable RTP colors with differentiated lifetimes, the ratios of two RTP emissive bands changed with time during the decay process, resulting in the continuous RTP colors variation in real-time. This two-component carbon dot-based co-crystallization strategy may open a new avenue for the development of time-dependent afterglow color materials. RSC 2021-07-23 /pmc/articles/PMC9417792/ /pubmed/36132350 http://dx.doi.org/10.1039/d1na00362c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Qu, Jian
Zhang, Xin
Zhang, Shuyan
Wang, Zhongjie
Yu, Yejian
Ding, Huajun
Tang, Zhiyuan
Heng, Xiangjun
Wang, Ruiqi
Jing, Su
A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title_full A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title_fullStr A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title_full_unstemmed A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title_short A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
title_sort facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417792/
https://www.ncbi.nlm.nih.gov/pubmed/36132350
http://dx.doi.org/10.1039/d1na00362c
work_keys_str_mv AT qujian afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT zhangxin afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT zhangshuyan afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT wangzhongjie afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT yuyejian afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT dinghuajun afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT tangzhiyuan afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT hengxiangjun afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT wangruiqi afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT jingsu afacilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT qujian facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT zhangxin facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT zhangshuyan facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT wangzhongjie facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT yuyejian facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT dinghuajun facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT tangzhiyuan facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT hengxiangjun facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT wangruiqi facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors
AT jingsu facilecocrystallizationapproachtofabricatetwocomponentcarbondotcompositesshowingtimedependentevolutiveroomtemperaturephosphorescencecolors