Cargando…
Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors
We present a facile strategy for fabricating a new type of one-dimensional (1D) carbon nanomaterial named carbon nanobranches (CNBs) covered with botryoidal carbon dots (CDs) by direct pyrolysis of a green precursor (starch). The resultant CNBs display both photoluminescence and electrical conductiv...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417816/ https://www.ncbi.nlm.nih.gov/pubmed/36133534 http://dx.doi.org/10.1039/c9na00181f |
_version_ | 1784776807140032512 |
---|---|
author | Chen, Qiao-Ling Wu, Xingjiang Cheng, Hengyang Li, Qing Chen, Su |
author_facet | Chen, Qiao-Ling Wu, Xingjiang Cheng, Hengyang Li, Qing Chen, Su |
author_sort | Chen, Qiao-Ling |
collection | PubMed |
description | We present a facile strategy for fabricating a new type of one-dimensional (1D) carbon nanomaterial named carbon nanobranches (CNBs) covered with botryoidal carbon dots (CDs) by direct pyrolysis of a green precursor (starch). The resultant CNBs display both photoluminescence and electrical conductivity and can be assembled into chemical sensors and energy-storage devices. In terms of their bright photoluminescence, CNBs with a fabulous crystalline structure are utilized as fluorescent probes to sensitively and selectively detect Co(2+) with a very low detection limit of 2.85 nM and a wide linear concentration range from 10 nM to 1 mM. Moreover, an efficient micro-supercapacitor (micro-SC) is constructed based on conductive CNB fibers produced via a customized microfluidic spinning technique. The micro-SCs exhibit a large specific capacitance of 201.4 mF cm(−2), an energy density of 4.5 μW h cm(−2) and high cycling stability, and can successfully power 19 light-emitting diodes (LEDs). The main purpose of this paper is to offer a perspective into simplifying the connecting of research and industry by starting from green carbon-based materials. |
format | Online Article Text |
id | pubmed-9417816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94178162022-09-20 Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors Chen, Qiao-Ling Wu, Xingjiang Cheng, Hengyang Li, Qing Chen, Su Nanoscale Adv Chemistry We present a facile strategy for fabricating a new type of one-dimensional (1D) carbon nanomaterial named carbon nanobranches (CNBs) covered with botryoidal carbon dots (CDs) by direct pyrolysis of a green precursor (starch). The resultant CNBs display both photoluminescence and electrical conductivity and can be assembled into chemical sensors and energy-storage devices. In terms of their bright photoluminescence, CNBs with a fabulous crystalline structure are utilized as fluorescent probes to sensitively and selectively detect Co(2+) with a very low detection limit of 2.85 nM and a wide linear concentration range from 10 nM to 1 mM. Moreover, an efficient micro-supercapacitor (micro-SC) is constructed based on conductive CNB fibers produced via a customized microfluidic spinning technique. The micro-SCs exhibit a large specific capacitance of 201.4 mF cm(−2), an energy density of 4.5 μW h cm(−2) and high cycling stability, and can successfully power 19 light-emitting diodes (LEDs). The main purpose of this paper is to offer a perspective into simplifying the connecting of research and industry by starting from green carbon-based materials. RSC 2019-07-19 /pmc/articles/PMC9417816/ /pubmed/36133534 http://dx.doi.org/10.1039/c9na00181f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Chen, Qiao-Ling Wu, Xingjiang Cheng, Hengyang Li, Qing Chen, Su Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title | Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title_full | Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title_fullStr | Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title_full_unstemmed | Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title_short | Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
title_sort | facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417816/ https://www.ncbi.nlm.nih.gov/pubmed/36133534 http://dx.doi.org/10.1039/c9na00181f |
work_keys_str_mv | AT chenqiaoling facilesynthesisofcarbonnanobranchestowardscobaltionsensingandhighperformancemicrosupercapacitors AT wuxingjiang facilesynthesisofcarbonnanobranchestowardscobaltionsensingandhighperformancemicrosupercapacitors AT chenghengyang facilesynthesisofcarbonnanobranchestowardscobaltionsensingandhighperformancemicrosupercapacitors AT liqing facilesynthesisofcarbonnanobranchestowardscobaltionsensingandhighperformancemicrosupercapacitors AT chensu facilesynthesisofcarbonnanobranchestowardscobaltionsensingandhighperformancemicrosupercapacitors |