Cargando…

Diffusion doping of cobalt in rod-shape anatase TiO(2) nanocrystals leads to antiferromagnetism

Cobalt(ii) ions were adsorbed to the surface of rod-shape anatase TiO(2) nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO(2) was obtained and characterized with po...

Descripción completa

Detalles Bibliográficos
Autores principales: Mia, Shahzahan, Varapragasam, Shelton J. P., Baride, Aravind, Balasanthiran, Choumini, Balasubramanian, Balamurugan, Rioux, Robert M., Hoefelmeyer, James D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417846/
https://www.ncbi.nlm.nih.gov/pubmed/36132911
http://dx.doi.org/10.1039/d0na00640h
Descripción
Sumario:Cobalt(ii) ions were adsorbed to the surface of rod-shape anatase TiO(2) nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO(2) was obtained and characterized with powder X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected. The concentration of cobalt in the doped samples linearly correlates with the initial loading of cobalt(ii) ions on the nanocrystal surface. Thin films of the cobalt doped TiO(2) nanocrystals were prepared on indium-tin oxide coated glass substrate, and the electrical conductivity increased with the concentration of doped cobalt. Magnetic measurements of the cobalt-doped TiO(2) nanocrystals reveal paramagnetic behavior at room temperature, and antiferromagnetic interactions between Co ions at low temperatures. Antiferromagnetism is atypical for cobalt-doped TiO(2) nanocrystals, and is proposed to arise from interstitial doping that may be favored by the diffusional doping mechanism.