Cargando…
COVID-19: Social distancing monitoring using faster-RCNN and YOLOv3 algorithms
As of March 31, 2021, the Coronavirus COVID-19 was affecting 219 countries and territories worldwide, with approximately 129,574,017 confirmed cases and 2,830,220 death cases. Social isolation is the most reliable way to deal with this pandemic situation. Motivated by this notion, this paper propose...
Autores principales: | Ahuja, Umang, Singh, Sunil, Kumar, Munish, Kumar, Krishan, Sachdeva, Monika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417929/ https://www.ncbi.nlm.nih.gov/pubmed/36060226 http://dx.doi.org/10.1007/s11042-022-13718-x |
Ejemplares similares
-
Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment
por: Singh, Sunil, et al.
Publicado: (2021) -
Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4
por: Youssouf, Njayou
Publicado: (2022) -
RTF-RCNN: An Architecture for Real-Time Tomato Plant Leaf Diseases Detection in Video Streaming Using Faster-RCNN
por: Alruwaili, Madallah, et al.
Publicado: (2022) -
Faster RCNN‐based detection of cervical spinal cord injury and disc degeneration
por: Ma, Shaolong, et al.
Publicado: (2020) -
Automatic localization and identification of mitochondria in cellular electron cryo-tomography using faster-RCNN
por: Li, Ran, et al.
Publicado: (2019)