Cargando…
Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene
Two dimensional (2D) chalcogenide monolayers have diversified applications in optoelectronics, piezotronics, sensors and energy harvesting. The group-IV tellurene monolayer is one such emerging material in the 2D family owing to its piezoelectric, thermoelectric and optoelectronic properties. In thi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418014/ https://www.ncbi.nlm.nih.gov/pubmed/36133659 http://dx.doi.org/10.1039/d0na00930j |
_version_ | 1784776853758672896 |
---|---|
author | Sachdeva, Parrydeep Kaur Gupta, Shuchi Bera, Chandan |
author_facet | Sachdeva, Parrydeep Kaur Gupta, Shuchi Bera, Chandan |
author_sort | Sachdeva, Parrydeep Kaur |
collection | PubMed |
description | Two dimensional (2D) chalcogenide monolayers have diversified applications in optoelectronics, piezotronics, sensors and energy harvesting. The group-IV tellurene monolayer is one such emerging material in the 2D family owing to its piezoelectric, thermoelectric and optoelectronic properties. In this paper, the mechanical and piezoelectric properties of 2D tellurene in centrosymmetric β and non-centrosymmetric β′ phases are investigated using density functional theory. β′-Te has shown a negative Poisson's ratio of −0.024 along the zigzag direction. Giant in-plane piezoelectric coefficients of −83.89 × 10(−10) C m(−1) and −42.58 × 10(−10) C m(−1) are observed for β′-Te under biaxial and uniaxial strains, respectively. The predicted values are remarkably higher, that is 23 and 12 times the piezoelectric coefficient of a MoS(2) monolayer with biaxial and uniaxial strain in the zigzag direction, respectively. A large thermal expansion coefficient of tellurene is also estimated using quasi harmonic approximation. High piezoelectricity combined with exotic mechanical and thermal properties makes tellurene a very promising candidate in nanoelectronics. |
format | Online Article Text |
id | pubmed-9418014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94180142022-09-20 Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene Sachdeva, Parrydeep Kaur Gupta, Shuchi Bera, Chandan Nanoscale Adv Chemistry Two dimensional (2D) chalcogenide monolayers have diversified applications in optoelectronics, piezotronics, sensors and energy harvesting. The group-IV tellurene monolayer is one such emerging material in the 2D family owing to its piezoelectric, thermoelectric and optoelectronic properties. In this paper, the mechanical and piezoelectric properties of 2D tellurene in centrosymmetric β and non-centrosymmetric β′ phases are investigated using density functional theory. β′-Te has shown a negative Poisson's ratio of −0.024 along the zigzag direction. Giant in-plane piezoelectric coefficients of −83.89 × 10(−10) C m(−1) and −42.58 × 10(−10) C m(−1) are observed for β′-Te under biaxial and uniaxial strains, respectively. The predicted values are remarkably higher, that is 23 and 12 times the piezoelectric coefficient of a MoS(2) monolayer with biaxial and uniaxial strain in the zigzag direction, respectively. A large thermal expansion coefficient of tellurene is also estimated using quasi harmonic approximation. High piezoelectricity combined with exotic mechanical and thermal properties makes tellurene a very promising candidate in nanoelectronics. RSC 2021-04-07 /pmc/articles/PMC9418014/ /pubmed/36133659 http://dx.doi.org/10.1039/d0na00930j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Sachdeva, Parrydeep Kaur Gupta, Shuchi Bera, Chandan Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title | Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title_full | Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title_fullStr | Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title_full_unstemmed | Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title_short | Large piezoelectric and thermal expansion coefficients with negative Poisson's ratio in strain-modulated tellurene |
title_sort | large piezoelectric and thermal expansion coefficients with negative poisson's ratio in strain-modulated tellurene |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418014/ https://www.ncbi.nlm.nih.gov/pubmed/36133659 http://dx.doi.org/10.1039/d0na00930j |
work_keys_str_mv | AT sachdevaparrydeepkaur largepiezoelectricandthermalexpansioncoefficientswithnegativepoissonsratioinstrainmodulatedtellurene AT guptashuchi largepiezoelectricandthermalexpansioncoefficientswithnegativepoissonsratioinstrainmodulatedtellurene AT berachandan largepiezoelectricandthermalexpansioncoefficientswithnegativepoissonsratioinstrainmodulatedtellurene |