Cargando…
Polyp segmentation with consistency training and continuous update of pseudo-label
Polyp segmentation has accomplished massive triumph over the years in the field of supervised learning. However, obtaining a vast number of labeled datasets is commonly challenging in the medical domain. To solve this problem, we employ semi-supervised methods and suitably take advantage of unlabele...
Autores principales: | Park, Hyun-Cheol, Poudel, Sahadev, Ghimire, Raman, Lee, Sang-Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418164/ https://www.ncbi.nlm.nih.gov/pubmed/36028547 http://dx.doi.org/10.1038/s41598-022-17843-3 |
Ejemplares similares
-
MMNet: A Mixing Module Network for Polyp Segmentation
por: Ghimire, Raman, et al.
Publicado: (2023) -
PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation
por: Huang, Yu, et al.
Publicado: (2023) -
Dual consistent pseudo label generation for multi-source domain adaptation without source data for medical image segmentation
por: Cai, Binke, et al.
Publicado: (2023) -
Segmentation of HE-stained meningioma pathological images based on pseudo-labels
por: Wu, Chongshu, et al.
Publicado: (2022) -
Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation
por: Zhan, Geng, et al.
Publicado: (2023)