Cargando…
Automated segmentation and feature discovery of age-related macular degeneration and Stargardt disease via self-attended neural networks
Age-related macular degeneration (AMD) and Stargardt disease are the leading causes of blindness for the elderly and young adults respectively. Geographic atrophy (GA) of AMD and Stargardt atrophy are their end-stage outcomes. Efficient methods for segmentation and quantification of these atrophic l...
Autores principales: | Wang, Ziyuan, Sadda, Srinivas Reddy, Lee, Aaron, Hu, Zhihong Jewel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418226/ https://www.ncbi.nlm.nih.gov/pubmed/36028647 http://dx.doi.org/10.1038/s41598-022-18785-6 |
Ejemplares similares
-
Artificial intelligence for assessment of Stargardt macular atrophy
por: Wang, Ziyuan, et al.
Publicado: (2022) -
Automatic Segmentation in Multiple OCT Layers For Stargardt Disease Characterization Via Deep Learning
por: Mishra, Zubin, et al.
Publicado: (2021) -
Reverse engineering for reconstructing baseline features of dry age-related macular degeneration in optical coherence tomography
por: Wang, Shuxian, et al.
Publicado: (2022) -
Visualizing and understanding inherent features in SD-OCT for the progression of age-related macular degeneration using deconvolutional neural networks
por: Saha, Sajib, et al.
Publicado: (2020) -
Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information
por: Mishra, Zubin, et al.
Publicado: (2020)