Cargando…
EpICC: A Bayesian neural network model with uncertainty correction for a more accurate classification of cancer
Accurate classification of cancers into their types and subtypes holds the key for choosing the right treatment strategy and can greatly impact patient well-being. However, existence of large-scale variations in the molecular processes driving even a single type of cancer can make accurate classific...
Autores principales: | Joshi, Prasoon, Dhar, Riddhiman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418241/ https://www.ncbi.nlm.nih.gov/pubmed/36028643 http://dx.doi.org/10.1038/s41598-022-18874-6 |
Ejemplares similares
-
The Classification of Tongue Colors with Standardized Acquisition and ICC Profile Correction in Traditional Chinese Medicine
por: Qi, Zhen, et al.
Publicado: (2016) -
An introduction to Bayesian neural networks and uncertainty quantification in neural networks
por: Talpini, Jacopo
Publicado: (2023) -
Validation of a new WIND classification compared to ICC classification for weaning outcome
por: Jeong, Byeong-Ho, et al.
Publicado: (2018) -
ICAAC/ICC 2015
por: McConnell, John
Publicado: (2015) -
Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
por: La, Van N. T., et al.
Publicado: (2023)