Cargando…
Prehospital diagnostic algorithm for acute coronary syndrome using machine learning: a prospective observational study
Rapid and precise prehospital recognition of acute coronary syndrome (ACS) is key to improving clinical outcomes. The aim of this study was to investigate a predictive power for predicting ACS using the machine learning-based prehospital algorithm. We conducted a multicenter observational prospectiv...
Autores principales: | Takeda, Masahiko, Oami, Takehiko, Hayashi, Yosuke, Shimada, Tadanaga, Hattori, Noriyuki, Tateishi, Kazuya, Miura, Rie E., Yamao, Yasuo, Abe, Ryuzo, Kobayashi, Yoshio, Nakada, Taka-aki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418242/ https://www.ncbi.nlm.nih.gov/pubmed/36028534 http://dx.doi.org/10.1038/s41598-022-18650-6 |
Ejemplares similares
-
A prehospital diagnostic algorithm for strokes using machine learning: a prospective observational study
por: Hayashi, Yosuke, et al.
Publicado: (2021) -
Prehospital stroke-scale machine-learning model predicts the need for surgical intervention
por: Yoshida, Yoichi, et al.
Publicado: (2023) -
Machine learning algorithms for predicting days of high incidence for out-of-hospital cardiac arrest
por: Shimada-Sammori, Kaoru, et al.
Publicado: (2023) -
Prediction algorithm for ICU mortality and length of stay using machine learning
por: Iwase, Shinya, et al.
Publicado: (2022) -
Protocol to acquire time series data on adverse reactions following vaccination using a smartphone or web-based platform
por: Yamao, Yasuo, et al.
Publicado: (2023)