Cargando…
Local-feature and global-dependency based tool wear prediction using deep learning
Evaluation of tool wear is vital in manufacturing system, since early detections on worn-out condition can ensure workpiece quality, improve machining efficiency. With the development of intelligent manufacturing, tool wear prediction technology plays an increasingly important role. However, traditi...
Autores principales: | Yang, Changsen, Zhou, Jingtao, Li, Enming, Wang, Mingwei, Jin, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418252/ https://www.ncbi.nlm.nih.gov/pubmed/36028636 http://dx.doi.org/10.1038/s41598-022-18235-3 |
Ejemplares similares
-
Clamping force prediction based on deep spatio-temporal network for machining process of deformable parts
por: Li, Enming, et al.
Publicado: (2023) -
Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals
por: Zhang, Yaping, et al.
Publicado: (2023) -
Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion
por: Huang, Pao-Ming, et al.
Publicado: (2021) -
Fusing Local Shallow Features and Global Deep Features to Identify Beaks
por: He, Qi, et al.
Publicado: (2023) -
Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
por: González, D., et al.
Publicado: (2022)