Cargando…
Machine learning-based treatment couch parameter prediction in support of surface guided radiation therapy
PURPOSE: A fully independent, machine learning-based automatic treatment couch parameters prediction was developed to support surface guided radiation therapy (SGRT)-based patient positioning protocols. Additionally, this approach also acts as a quality assurance tool for patient positioning. MATERI...
Autores principales: | De Kerf, Geert, Claessens, Michaël, Mollaert, Isabelle, Vingerhoed, Wim, Verellen, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418545/ https://www.ncbi.nlm.nih.gov/pubmed/36039333 http://dx.doi.org/10.1016/j.tipsro.2022.08.001 |
Ejemplares similares
-
Machine learning applications in radiation oncology: Current use and needs to support clinical implementation
por: Brouwer, Charlotte L., et al.
Publicado: (2020) -
A geometry and dose-volume based performance monitoring of artificial intelligence models in radiotherapy treatment planning for prostate cancer
por: De Kerf, Geert, et al.
Publicado: (2023) -
CouchDB: the definitive guide
por: Anderson, J, et al.
Publicado: (2010) -
Precision of image-guided spinal stereotactic ablative radiotherapy and impact of positioning variables
por: Billiet, Charlotte, et al.
Publicado: (2022) -
Evaluation of the optimal combinations of modulation factor and pitch for Helical TomoTherapy plans made with TomoEdge using Pareto optimal fronts
por: De Kerf, Geert, et al.
Publicado: (2015)