Cargando…

Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor

G protein‐coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket. We hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez‐Rosés, Mireia, Morgan, Bradley Angus, Jimenez Sigstad, Maria, Tran, Thuy Duong Zoe, Srivastava, Rohini, Bunsuz, Asuman, Borrega‐Román, Leire, Hompluem, Pattarin, Cullum, Sean A., Harwood, Clare R., Koers, Eline J., Sykes, David A., Styles, Iain B., Veprintsev, Dmitry B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418666/
https://www.ncbi.nlm.nih.gov/pubmed/36029004
http://dx.doi.org/10.1002/prp2.994
_version_ 1784776999482425344
author Jiménez‐Rosés, Mireia
Morgan, Bradley Angus
Jimenez Sigstad, Maria
Tran, Thuy Duong Zoe
Srivastava, Rohini
Bunsuz, Asuman
Borrega‐Román, Leire
Hompluem, Pattarin
Cullum, Sean A.
Harwood, Clare R.
Koers, Eline J.
Sykes, David A.
Styles, Iain B.
Veprintsev, Dmitry B.
author_facet Jiménez‐Rosés, Mireia
Morgan, Bradley Angus
Jimenez Sigstad, Maria
Tran, Thuy Duong Zoe
Srivastava, Rohini
Bunsuz, Asuman
Borrega‐Román, Leire
Hompluem, Pattarin
Cullum, Sean A.
Harwood, Clare R.
Koers, Eline J.
Sykes, David A.
Styles, Iain B.
Veprintsev, Dmitry B.
author_sort Jiménez‐Rosés, Mireia
collection PubMed
description G protein‐coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket. We hypothesized that there is a common set of receptor interactions made by ligands of diverse structures that mediate their action and that among a large dataset of different ligands, the functionally important interactions will be over‐represented. We computationally docked ~2700 known β2AR ligands to multiple β2AR structures, generating ca 75 000 docking poses and predicted all atomic interactions between the receptor and the ligand. We used machine learning (ML) techniques to identify specific interactions that correlate with the agonist or antagonist activity of these ligands. We demonstrate with the application of ML methods that it is possible to identify the key interactions associated with agonism or antagonism of ligands. The most representative interactions for agonist ligands involve K97(2.68×67), F194(ECL2), S203(5.42×43), S204(5.43×44), S207(5.46×641), H296(6.58×58), and K305(7.32×31). Meanwhile, the antagonist ligands made interactions with W286(6.48×48) and Y316(7.43×42), both residues considered to be important in GPCR activation. The interpretation of ML analysis in human understandable form allowed us to construct an exquisitely detailed structure‐activity relationship that identifies small changes to the ligands that invert their pharmacological activity and thus helps to guide the drug discovery process. This approach can be readily applied to any drug target.
format Online
Article
Text
id pubmed-9418666
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94186662022-08-31 Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor Jiménez‐Rosés, Mireia Morgan, Bradley Angus Jimenez Sigstad, Maria Tran, Thuy Duong Zoe Srivastava, Rohini Bunsuz, Asuman Borrega‐Román, Leire Hompluem, Pattarin Cullum, Sean A. Harwood, Clare R. Koers, Eline J. Sykes, David A. Styles, Iain B. Veprintsev, Dmitry B. Pharmacol Res Perspect Original Articles G protein‐coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket. We hypothesized that there is a common set of receptor interactions made by ligands of diverse structures that mediate their action and that among a large dataset of different ligands, the functionally important interactions will be over‐represented. We computationally docked ~2700 known β2AR ligands to multiple β2AR structures, generating ca 75 000 docking poses and predicted all atomic interactions between the receptor and the ligand. We used machine learning (ML) techniques to identify specific interactions that correlate with the agonist or antagonist activity of these ligands. We demonstrate with the application of ML methods that it is possible to identify the key interactions associated with agonism or antagonism of ligands. The most representative interactions for agonist ligands involve K97(2.68×67), F194(ECL2), S203(5.42×43), S204(5.43×44), S207(5.46×641), H296(6.58×58), and K305(7.32×31). Meanwhile, the antagonist ligands made interactions with W286(6.48×48) and Y316(7.43×42), both residues considered to be important in GPCR activation. The interpretation of ML analysis in human understandable form allowed us to construct an exquisitely detailed structure‐activity relationship that identifies small changes to the ligands that invert their pharmacological activity and thus helps to guide the drug discovery process. This approach can be readily applied to any drug target. John Wiley and Sons Inc. 2022-08-26 /pmc/articles/PMC9418666/ /pubmed/36029004 http://dx.doi.org/10.1002/prp2.994 Text en © 2022 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Jiménez‐Rosés, Mireia
Morgan, Bradley Angus
Jimenez Sigstad, Maria
Tran, Thuy Duong Zoe
Srivastava, Rohini
Bunsuz, Asuman
Borrega‐Román, Leire
Hompluem, Pattarin
Cullum, Sean A.
Harwood, Clare R.
Koers, Eline J.
Sykes, David A.
Styles, Iain B.
Veprintsev, Dmitry B.
Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title_full Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title_fullStr Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title_full_unstemmed Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title_short Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
title_sort combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418666/
https://www.ncbi.nlm.nih.gov/pubmed/36029004
http://dx.doi.org/10.1002/prp2.994
work_keys_str_mv AT jimenezrosesmireia combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT morganbradleyangus combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT jimenezsigstadmaria combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT tranthuyduongzoe combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT srivastavarohini combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT bunsuzasuman combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT borregaromanleire combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT hompluempattarin combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT cullumseana combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT harwoodclarer combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT koerselinej combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT sykesdavida combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT stylesiainb combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor
AT veprintsevdmitryb combineddockingandmachinelearningidentifykeymoleculardeterminantsofligandpharmacologicalactivityonb2adrenoceptor