Cargando…

On the passivation of iron particles at the nanoscale

The oxidation of Fe@Au core@shell clusters with sizes below 5 nm is studied via high resolution scanning transmission electron microscopy. The bimetallic nanoparticles are grown in superfluid helium droplets under fully inert conditions, avoiding any effect of solvents or template structures, and de...

Descripción completa

Detalles Bibliográficos
Autores principales: Lasserus, Maximilian, Knez, Daniel, Schnedlitz, Martin, Hauser, Andreas W., Hofer, Ferdinand, Ernst, Wolfgang E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418694/
https://www.ncbi.nlm.nih.gov/pubmed/36131962
http://dx.doi.org/10.1039/c9na00161a
_version_ 1784777006246789120
author Lasserus, Maximilian
Knez, Daniel
Schnedlitz, Martin
Hauser, Andreas W.
Hofer, Ferdinand
Ernst, Wolfgang E.
author_facet Lasserus, Maximilian
Knez, Daniel
Schnedlitz, Martin
Hauser, Andreas W.
Hofer, Ferdinand
Ernst, Wolfgang E.
author_sort Lasserus, Maximilian
collection PubMed
description The oxidation of Fe@Au core@shell clusters with sizes below 5 nm is studied via high resolution scanning transmission electron microscopy. The bimetallic nanoparticles are grown in superfluid helium droplets under fully inert conditions, avoiding any effect of solvents or template structures, and deposited on amorphous carbon. Oxidation resistivity is tested by exposure to oxygen at ambient conditions. The passivating effect of Au-shells is studied in detail and a critical Au shell thickness is determined which keeps the Fe core completely unharmed. Additionally, we present the first synthesis of Fe@Au@Fe-oxide onion-type structures.
format Online
Article
Text
id pubmed-9418694
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94186942022-09-20 On the passivation of iron particles at the nanoscale Lasserus, Maximilian Knez, Daniel Schnedlitz, Martin Hauser, Andreas W. Hofer, Ferdinand Ernst, Wolfgang E. Nanoscale Adv Chemistry The oxidation of Fe@Au core@shell clusters with sizes below 5 nm is studied via high resolution scanning transmission electron microscopy. The bimetallic nanoparticles are grown in superfluid helium droplets under fully inert conditions, avoiding any effect of solvents or template structures, and deposited on amorphous carbon. Oxidation resistivity is tested by exposure to oxygen at ambient conditions. The passivating effect of Au-shells is studied in detail and a critical Au shell thickness is determined which keeps the Fe core completely unharmed. Additionally, we present the first synthesis of Fe@Au@Fe-oxide onion-type structures. RSC 2019-04-23 /pmc/articles/PMC9418694/ /pubmed/36131962 http://dx.doi.org/10.1039/c9na00161a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Lasserus, Maximilian
Knez, Daniel
Schnedlitz, Martin
Hauser, Andreas W.
Hofer, Ferdinand
Ernst, Wolfgang E.
On the passivation of iron particles at the nanoscale
title On the passivation of iron particles at the nanoscale
title_full On the passivation of iron particles at the nanoscale
title_fullStr On the passivation of iron particles at the nanoscale
title_full_unstemmed On the passivation of iron particles at the nanoscale
title_short On the passivation of iron particles at the nanoscale
title_sort on the passivation of iron particles at the nanoscale
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418694/
https://www.ncbi.nlm.nih.gov/pubmed/36131962
http://dx.doi.org/10.1039/c9na00161a
work_keys_str_mv AT lasserusmaximilian onthepassivationofironparticlesatthenanoscale
AT knezdaniel onthepassivationofironparticlesatthenanoscale
AT schnedlitzmartin onthepassivationofironparticlesatthenanoscale
AT hauserandreasw onthepassivationofironparticlesatthenanoscale
AT hoferferdinand onthepassivationofironparticlesatthenanoscale
AT ernstwolfgange onthepassivationofironparticlesatthenanoscale