Cargando…

The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance

Transition metal dichalcogenides (TMDCs) with layered architecture and excellent optoelectronic properties have been a hot spot for light-emitting diodes (LED). However, the light-emitting efficiency of TMDC LEDs is still low due to the large size limit of TMDC flakes and the inefficient device arch...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Caiyun, Yang, Fuchao, Gao, Yihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418884/
https://www.ncbi.nlm.nih.gov/pubmed/36132931
http://dx.doi.org/10.1039/d0na00501k
_version_ 1784777048314609664
author Wang, Caiyun
Yang, Fuchao
Gao, Yihua
author_facet Wang, Caiyun
Yang, Fuchao
Gao, Yihua
author_sort Wang, Caiyun
collection PubMed
description Transition metal dichalcogenides (TMDCs) with layered architecture and excellent optoelectronic properties have been a hot spot for light-emitting diodes (LED). However, the light-emitting efficiency of TMDC LEDs is still low due to the large size limit of TMDC flakes and the inefficient device architecture. First and foremost, to develop the highly-efficient and reliable few-layer TMDC LEDs, the modulation of the electronic properties of TMDCs and TMDC heterostructures is necessary. In order to create efficient TMDC LEDs with prominent performance, an in-depth understanding of the working mechanism is needed. Besides conventional structures, the electric (or ionic liquid)-induced p–n junction of TMDCs is a useful configuration for multifunctional LED applications. The significant performances are contrasted in the four aspects of color, polarity, and external quantum efficiency. The color of light ranging from infrared to visible light can be acquired from TMDC LEDs by purposeful and selective architecture construction. To date, the maximum of the external quantum efficiency achieved by TMDC LEDs is 12%. In the demand for performance, the material and configuration of the nano device can be chosen according to this review. Moreover, novel electroluminescence devices involving single-photon emitters and alternative pulsed light emitters can expand their application scope. In this review, we provide an overview of the significant investigations that have provided a wealth of detailed information on TMDC electroluminescence devices at the molecular level.
format Online
Article
Text
id pubmed-9418884
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94188842022-09-20 The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance Wang, Caiyun Yang, Fuchao Gao, Yihua Nanoscale Adv Chemistry Transition metal dichalcogenides (TMDCs) with layered architecture and excellent optoelectronic properties have been a hot spot for light-emitting diodes (LED). However, the light-emitting efficiency of TMDC LEDs is still low due to the large size limit of TMDC flakes and the inefficient device architecture. First and foremost, to develop the highly-efficient and reliable few-layer TMDC LEDs, the modulation of the electronic properties of TMDCs and TMDC heterostructures is necessary. In order to create efficient TMDC LEDs with prominent performance, an in-depth understanding of the working mechanism is needed. Besides conventional structures, the electric (or ionic liquid)-induced p–n junction of TMDCs is a useful configuration for multifunctional LED applications. The significant performances are contrasted in the four aspects of color, polarity, and external quantum efficiency. The color of light ranging from infrared to visible light can be acquired from TMDC LEDs by purposeful and selective architecture construction. To date, the maximum of the external quantum efficiency achieved by TMDC LEDs is 12%. In the demand for performance, the material and configuration of the nano device can be chosen according to this review. Moreover, novel electroluminescence devices involving single-photon emitters and alternative pulsed light emitters can expand their application scope. In this review, we provide an overview of the significant investigations that have provided a wealth of detailed information on TMDC electroluminescence devices at the molecular level. RSC 2020-07-22 /pmc/articles/PMC9418884/ /pubmed/36132931 http://dx.doi.org/10.1039/d0na00501k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Wang, Caiyun
Yang, Fuchao
Gao, Yihua
The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title_full The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title_fullStr The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title_full_unstemmed The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title_short The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
title_sort highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418884/
https://www.ncbi.nlm.nih.gov/pubmed/36132931
http://dx.doi.org/10.1039/d0na00501k
work_keys_str_mv AT wangcaiyun thehighlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance
AT yangfuchao thehighlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance
AT gaoyihua thehighlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance
AT wangcaiyun highlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance
AT yangfuchao highlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance
AT gaoyihua highlyefficientlightemittingdiodesbasedontransitionmetaldichalcogenidesfromarchitecturetoperformance