Cargando…

Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)

Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te)....

Descripción completa

Detalles Bibliográficos
Autores principales: Sino, Paul Albert L., Feng, Liang-Ying, Villaos, Rovi Angelo B., Cruzado, Harvey N., Huang, Zhi-Quan, Hsu, Chia-Hsiu, Chuang, Feng-Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419079/
https://www.ncbi.nlm.nih.gov/pubmed/36132660
http://dx.doi.org/10.1039/d1na00334h
_version_ 1784777095737507840
author Sino, Paul Albert L.
Feng, Liang-Ying
Villaos, Rovi Angelo B.
Cruzado, Harvey N.
Huang, Zhi-Quan
Hsu, Chia-Hsiu
Chuang, Feng-Chuan
author_facet Sino, Paul Albert L.
Feng, Liang-Ying
Villaos, Rovi Angelo B.
Cruzado, Harvey N.
Huang, Zhi-Quan
Hsu, Chia-Hsiu
Chuang, Feng-Chuan
author_sort Sino, Paul Albert L.
collection PubMed
description Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te). Our calculated formation energies show that these monolayer Janus structures retain the 1T phase. Furthermore, phonon spectral calculations confirm that these Janus TMD monolayers are thermodynamically stable. We found that PtSSe, PtSTe, and PtSeTe exhibit an insulating phase with indirect band gaps of 2.108, 1.335, and 1.221 eV, respectively, from hybrid functional calculations. Due to the breaking of centrosymmetry in the crystal structure, the spin–orbit coupling (SOC)-induced anisotropic Rashba splitting is observed around the M point. The calculated Rashba strengths from M to Γ (α(M–Γ)(R)) are 1.654, 1.103, and 0.435 eV Å(−1), while the calculated values from M to K (α(M–K)(R)) are 1.333, 1.244, and 0.746 eV Å(−1), respectively, for PtSSe, PtSTe, and PtSeTe. Interestingly, the spin textures reveal that the spin-splitting is mainly attributed to the Rashba effect. However, a Dresselhaus-like contribution also plays a secondary role. Finally, we found that the band gaps and the strength of the Rashba effect can be further tuned through biaxial strain. Our findings indeed show that Pt-based Janus TMDs demonstrate the potential for spintronics applications.
format Online
Article
Text
id pubmed-9419079
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94190792022-09-20 Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te) Sino, Paul Albert L. Feng, Liang-Ying Villaos, Rovi Angelo B. Cruzado, Harvey N. Huang, Zhi-Quan Hsu, Chia-Hsiu Chuang, Feng-Chuan Nanoscale Adv Chemistry Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te). Our calculated formation energies show that these monolayer Janus structures retain the 1T phase. Furthermore, phonon spectral calculations confirm that these Janus TMD monolayers are thermodynamically stable. We found that PtSSe, PtSTe, and PtSeTe exhibit an insulating phase with indirect band gaps of 2.108, 1.335, and 1.221 eV, respectively, from hybrid functional calculations. Due to the breaking of centrosymmetry in the crystal structure, the spin–orbit coupling (SOC)-induced anisotropic Rashba splitting is observed around the M point. The calculated Rashba strengths from M to Γ (α(M–Γ)(R)) are 1.654, 1.103, and 0.435 eV Å(−1), while the calculated values from M to K (α(M–K)(R)) are 1.333, 1.244, and 0.746 eV Å(−1), respectively, for PtSSe, PtSTe, and PtSeTe. Interestingly, the spin textures reveal that the spin-splitting is mainly attributed to the Rashba effect. However, a Dresselhaus-like contribution also plays a secondary role. Finally, we found that the band gaps and the strength of the Rashba effect can be further tuned through biaxial strain. Our findings indeed show that Pt-based Janus TMDs demonstrate the potential for spintronics applications. RSC 2021-09-14 /pmc/articles/PMC9419079/ /pubmed/36132660 http://dx.doi.org/10.1039/d1na00334h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Sino, Paul Albert L.
Feng, Liang-Ying
Villaos, Rovi Angelo B.
Cruzado, Harvey N.
Huang, Zhi-Quan
Hsu, Chia-Hsiu
Chuang, Feng-Chuan
Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title_full Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title_fullStr Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title_full_unstemmed Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title_short Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te)
title_sort anisotropic rashba splitting in pt-based janus monolayers ptxy (x,y = s, se, or te)
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419079/
https://www.ncbi.nlm.nih.gov/pubmed/36132660
http://dx.doi.org/10.1039/d1na00334h
work_keys_str_mv AT sinopaulalbertl anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT fengliangying anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT villaosroviangelob anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT cruzadoharveyn anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT huangzhiquan anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT hsuchiahsiu anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte
AT chuangfengchuan anisotropicrashbasplittinginptbasedjanusmonolayersptxyxysseorte