Cargando…

Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures

The production of materials that contain more than one functional constituent, the so-called multifunctional materials, is quite relevant in advanced technology. By acting as building blocks, nanoparticles can be suitably explored for generating higher-order multifunctional structures. In this regar...

Descripción completa

Detalles Bibliográficos
Autores principales: Menegatti de Melo, Fernando, Mattioni, João V., Dias, Fernando, Fu, Ying, Toma, Henrique E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419086/
https://www.ncbi.nlm.nih.gov/pubmed/36133726
http://dx.doi.org/10.1039/d1na00149c
Descripción
Sumario:The production of materials that contain more than one functional constituent, the so-called multifunctional materials, is quite relevant in advanced technology. By acting as building blocks, nanoparticles can be suitably explored for generating higher-order multifunctional structures. In this regard, herein, a special clustered magneto-fluorescent superstructure has been developed for non-destructive detection of flaws and shallow subsurface discontinuities in industrial ferromagnetic materials. The strategy consists of the solvophobic-controlled assembly of organic-based maghemite cores and water-based II–VI quantum dots, in the presence of hexadecyltrimethyl-ammonium bromide, CTAB, as a compatibilizer agent. This composite exhibited a high magnetic response (σ(max) = 66 emu g(−1)) and uniform size, in addition to tunable optical properties (QY = 78%). The strategy of utilizing nanoparticles as magneto-fluorescent nanoprobes to identify tiny slits represents a great advance, for improving the capability of precisely revealing the fracture boundary locations by visual real-time inspection. The nanoscale probes exhibit a low signal-to-noise ratio and a higher competitive performance in relation to the existing micrometric detection systems.