Cargando…

Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires

We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium...

Descripción completa

Detalles Bibliográficos
Autores principales: Kockert, M., Mitdank, R., Moon, H., Kim, J., Mogilatenko, A., Moosavi, S. H., Kroener, M., Woias, P., Lee, W., Fischer, S. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419100/
https://www.ncbi.nlm.nih.gov/pubmed/36131884
http://dx.doi.org/10.1039/d0na00658k
_version_ 1784777101022330880
author Kockert, M.
Mitdank, R.
Moon, H.
Kim, J.
Mogilatenko, A.
Moosavi, S. H.
Kroener, M.
Woias, P.
Lee, W.
Fischer, S. F.
author_facet Kockert, M.
Mitdank, R.
Moon, H.
Kim, J.
Mogilatenko, A.
Moosavi, S. H.
Kroener, M.
Woias, P.
Lee, W.
Fischer, S. F.
author_sort Kockert, M.
collection PubMed
description We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO(2)) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO(2) core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO(2) shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation.
format Online
Article
Text
id pubmed-9419100
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94191002022-09-20 Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires Kockert, M. Mitdank, R. Moon, H. Kim, J. Mogilatenko, A. Moosavi, S. H. Kroener, M. Woias, P. Lee, W. Fischer, S. F. Nanoscale Adv Chemistry We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO(2)) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO(2) core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO(2) shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation. RSC 2020-12-09 /pmc/articles/PMC9419100/ /pubmed/36131884 http://dx.doi.org/10.1039/d0na00658k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Kockert, M.
Mitdank, R.
Moon, H.
Kim, J.
Mogilatenko, A.
Moosavi, S. H.
Kroener, M.
Woias, P.
Lee, W.
Fischer, S. F.
Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title_full Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title_fullStr Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title_full_unstemmed Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title_short Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
title_sort semimetal to semiconductor transition in bi/tio(2) core/shell nanowires
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419100/
https://www.ncbi.nlm.nih.gov/pubmed/36131884
http://dx.doi.org/10.1039/d0na00658k
work_keys_str_mv AT kockertm semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT mitdankr semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT moonh semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT kimj semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT mogilatenkoa semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT moosavish semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT kroenerm semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT woiasp semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT leew semimetaltosemiconductortransitioninbitio2coreshellnanowires
AT fischersf semimetaltosemiconductortransitioninbitio2coreshellnanowires