Cargando…
Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires
We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419100/ https://www.ncbi.nlm.nih.gov/pubmed/36131884 http://dx.doi.org/10.1039/d0na00658k |
_version_ | 1784777101022330880 |
---|---|
author | Kockert, M. Mitdank, R. Moon, H. Kim, J. Mogilatenko, A. Moosavi, S. H. Kroener, M. Woias, P. Lee, W. Fischer, S. F. |
author_facet | Kockert, M. Mitdank, R. Moon, H. Kim, J. Mogilatenko, A. Moosavi, S. H. Kroener, M. Woias, P. Lee, W. Fischer, S. F. |
author_sort | Kockert, M. |
collection | PubMed |
description | We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO(2)) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO(2) core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO(2) shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation. |
format | Online Article Text |
id | pubmed-9419100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94191002022-09-20 Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires Kockert, M. Mitdank, R. Moon, H. Kim, J. Mogilatenko, A. Moosavi, S. H. Kroener, M. Woias, P. Lee, W. Fischer, S. F. Nanoscale Adv Chemistry We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO(2)) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO(2) core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO(2) shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation. RSC 2020-12-09 /pmc/articles/PMC9419100/ /pubmed/36131884 http://dx.doi.org/10.1039/d0na00658k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Kockert, M. Mitdank, R. Moon, H. Kim, J. Mogilatenko, A. Moosavi, S. H. Kroener, M. Woias, P. Lee, W. Fischer, S. F. Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title | Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title_full | Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title_fullStr | Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title_full_unstemmed | Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title_short | Semimetal to semiconductor transition in Bi/TiO(2) core/shell nanowires |
title_sort | semimetal to semiconductor transition in bi/tio(2) core/shell nanowires |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419100/ https://www.ncbi.nlm.nih.gov/pubmed/36131884 http://dx.doi.org/10.1039/d0na00658k |
work_keys_str_mv | AT kockertm semimetaltosemiconductortransitioninbitio2coreshellnanowires AT mitdankr semimetaltosemiconductortransitioninbitio2coreshellnanowires AT moonh semimetaltosemiconductortransitioninbitio2coreshellnanowires AT kimj semimetaltosemiconductortransitioninbitio2coreshellnanowires AT mogilatenkoa semimetaltosemiconductortransitioninbitio2coreshellnanowires AT moosavish semimetaltosemiconductortransitioninbitio2coreshellnanowires AT kroenerm semimetaltosemiconductortransitioninbitio2coreshellnanowires AT woiasp semimetaltosemiconductortransitioninbitio2coreshellnanowires AT leew semimetaltosemiconductortransitioninbitio2coreshellnanowires AT fischersf semimetaltosemiconductortransitioninbitio2coreshellnanowires |