Cargando…
Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement
Zero-mode waveguides (ZMWs) are capable of modifying fluorescence emission through interactions with surface plasmon modes leading to either plasmon-enhanced fluorescence or quenching. Enhancement requires spectral overlap of the plasmon modes with the absorption or emission of the fluorophore. Thus...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419232/ https://www.ncbi.nlm.nih.gov/pubmed/36132495 http://dx.doi.org/10.1039/c9na00641a |
_version_ | 1784777130205249536 |
---|---|
author | Al Masud, Abdullah Martin, W. Elliott Moonschi, Faruk H. Park, So Min Srijanto, Bernadeta R. Graham, Kenneth R. Collier, C. Patrick Richards, Christopher I. |
author_facet | Al Masud, Abdullah Martin, W. Elliott Moonschi, Faruk H. Park, So Min Srijanto, Bernadeta R. Graham, Kenneth R. Collier, C. Patrick Richards, Christopher I. |
author_sort | Al Masud, Abdullah |
collection | PubMed |
description | Zero-mode waveguides (ZMWs) are capable of modifying fluorescence emission through interactions with surface plasmon modes leading to either plasmon-enhanced fluorescence or quenching. Enhancement requires spectral overlap of the plasmon modes with the absorption or emission of the fluorophore. Thus, enhancement is limited to fluorophores in resonance with metals (e.g. Al, Au, Ag) used for ZMWs. The ability to tune interactions to match a wider range of fluorophores across the visible spectra would significantly extend the utility of ZMWs. We fabricated ZMWs composed of aluminum and gold individually and also in mixtures of three different ratios, (Al : Au; 75 : 25, 50 : 50, 25 : 75). We characterized the effect of mixed-metal ZMWs on single-molecule emission for a range fluorophores across the visible spectrum. Mixed metal ZMWs exhibited a shift in the spectral range where they exhibited the maximum fluorescence enhancement allowing us to match the emission of fluorophores that were nonresonant with single metal ZMWs. We also compared the effect of mixed-metal ZMWs on the photophysical properties of fluorescent molecules due to metal–molecule interactions. We quantified changes in fluorescence lifetimes and photostability that were dependent on the ratio of Au and Al. Tuning the enhancement properties of ZMWs by changing the ratio of Au and Al allowed us to match the fluorescence of fluorophores that emit in different regions of the visible spectrum. |
format | Online Article Text |
id | pubmed-9419232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94192322022-09-20 Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement Al Masud, Abdullah Martin, W. Elliott Moonschi, Faruk H. Park, So Min Srijanto, Bernadeta R. Graham, Kenneth R. Collier, C. Patrick Richards, Christopher I. Nanoscale Adv Chemistry Zero-mode waveguides (ZMWs) are capable of modifying fluorescence emission through interactions with surface plasmon modes leading to either plasmon-enhanced fluorescence or quenching. Enhancement requires spectral overlap of the plasmon modes with the absorption or emission of the fluorophore. Thus, enhancement is limited to fluorophores in resonance with metals (e.g. Al, Au, Ag) used for ZMWs. The ability to tune interactions to match a wider range of fluorophores across the visible spectra would significantly extend the utility of ZMWs. We fabricated ZMWs composed of aluminum and gold individually and also in mixtures of three different ratios, (Al : Au; 75 : 25, 50 : 50, 25 : 75). We characterized the effect of mixed-metal ZMWs on single-molecule emission for a range fluorophores across the visible spectrum. Mixed metal ZMWs exhibited a shift in the spectral range where they exhibited the maximum fluorescence enhancement allowing us to match the emission of fluorophores that were nonresonant with single metal ZMWs. We also compared the effect of mixed-metal ZMWs on the photophysical properties of fluorescent molecules due to metal–molecule interactions. We quantified changes in fluorescence lifetimes and photostability that were dependent on the ratio of Au and Al. Tuning the enhancement properties of ZMWs by changing the ratio of Au and Al allowed us to match the fluorescence of fluorophores that emit in different regions of the visible spectrum. RSC 2020-03-25 /pmc/articles/PMC9419232/ /pubmed/36132495 http://dx.doi.org/10.1039/c9na00641a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Al Masud, Abdullah Martin, W. Elliott Moonschi, Faruk H. Park, So Min Srijanto, Bernadeta R. Graham, Kenneth R. Collier, C. Patrick Richards, Christopher I. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title | Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title_full | Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title_fullStr | Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title_full_unstemmed | Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title_short | Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement |
title_sort | mixed metal zero-mode guides (zmws) for tunable fluorescence enhancement |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419232/ https://www.ncbi.nlm.nih.gov/pubmed/36132495 http://dx.doi.org/10.1039/c9na00641a |
work_keys_str_mv | AT almasudabdullah mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT martinwelliott mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT moonschifarukh mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT parksomin mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT srijantobernadetar mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT grahamkennethr mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT colliercpatrick mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement AT richardschristopheri mixedmetalzeromodeguideszmwsfortunablefluorescenceenhancement |