Cargando…
Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials
Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S(2)CNR(2))(2)] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S(2)CN(i)Bu(2))(2)] in oleylamine gives high aspect rati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419409/ https://www.ncbi.nlm.nih.gov/pubmed/36133240 http://dx.doi.org/10.1039/c9na00665f |
_version_ | 1784777168628219904 |
---|---|
author | Islam, Husn-Ubayda Roffey, Anna Hollingsworth, Nathan Bras, Wim Sankar, Gopinathan De Leeuw, Nora H. Hogarth, Graeme |
author_facet | Islam, Husn-Ubayda Roffey, Anna Hollingsworth, Nathan Bras, Wim Sankar, Gopinathan De Leeuw, Nora H. Hogarth, Graeme |
author_sort | Islam, Husn-Ubayda |
collection | PubMed |
description | Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S(2)CNR(2))(2)] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S(2)CN(i)Bu(2))(2)] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S(2)CNMe(2))(2)] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S(2)CNMe(2))(2)](2) was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH(2)) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S(2)CNMe(2))(2)(RNH(2))]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S(2)CNMe(2))(S(2)CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process. |
format | Online Article Text |
id | pubmed-9419409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94194092022-09-20 Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials Islam, Husn-Ubayda Roffey, Anna Hollingsworth, Nathan Bras, Wim Sankar, Gopinathan De Leeuw, Nora H. Hogarth, Graeme Nanoscale Adv Chemistry Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S(2)CNR(2))(2)] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S(2)CN(i)Bu(2))(2)] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S(2)CNMe(2))(2)] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S(2)CNMe(2))(2)](2) was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH(2)) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S(2)CNMe(2))(2)(RNH(2))]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S(2)CNMe(2))(S(2)CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process. RSC 2020-01-09 /pmc/articles/PMC9419409/ /pubmed/36133240 http://dx.doi.org/10.1039/c9na00665f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Islam, Husn-Ubayda Roffey, Anna Hollingsworth, Nathan Bras, Wim Sankar, Gopinathan De Leeuw, Nora H. Hogarth, Graeme Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title | Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title_full | Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title_fullStr | Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title_full_unstemmed | Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title_short | Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials |
title_sort | understanding the role of zinc dithiocarbamate complexes as single source precursors to zns nanomaterials |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419409/ https://www.ncbi.nlm.nih.gov/pubmed/36133240 http://dx.doi.org/10.1039/c9na00665f |
work_keys_str_mv | AT islamhusnubayda understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT roffeyanna understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT hollingsworthnathan understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT braswim understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT sankargopinathan understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT deleeuwnorah understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials AT hogarthgraeme understandingtheroleofzincdithiocarbamatecomplexesassinglesourceprecursorstoznsnanomaterials |