Cargando…
Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome
OBJECTIVE: The internal workings ofmachine learning algorithms are complex and considered as low-interpretation "black box" models, making it difficult for domain experts to understand and trust these complex models. The study uses metabolic syndrome (MetS) as the entry point to analyze an...
Autores principales: | Zhang, Yan, Zhang, Xiaoxu, Razbek, Jaina, Li, Deyang, Xia, Wenjun, Bao, Liangliang, Mao, Hongkai, Daken, Mayisha, Cao, Mingqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419421/ https://www.ncbi.nlm.nih.gov/pubmed/36028865 http://dx.doi.org/10.1186/s12902-022-01121-4 |
Ejemplares similares
-
Construction of Xinjiang metabolic syndrome risk prediction model based on interpretable models
por: Zhang, Yan, et al.
Publicado: (2022) -
The relationship between vitamin D level and second acid-fast bacilli (AFB) smear-positive during treatment for TB patients was inferred by Bayesian network
por: Zhang, Xiaoxu, et al.
Publicado: (2022) -
Interpreting a black box predictor to gain insights into early folding mechanisms
por: Grau, Isel, et al.
Publicado: (2021) -
Opening the Black Box of Electronic Health: Collecting, Analyzing, and Interpreting Log Data
por: Sieverink, Floor, et al.
Publicado: (2017) -
Correction for: Opening the Black Box of Electronic Health: Collecting, Analyzing, and Interpreting Log Data
por: Sieverink, Floor, et al.
Publicado: (2018)