Cargando…
Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario
In recent times, COVID-19 pandemic has posed certain challenges to transportation companies due to the restrictions imposed by different countries during the lockdown. These restrictions cause delay and/ or reduction in the number of trips of vehicles, especially, to the regions with higher restrict...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419443/ https://www.ncbi.nlm.nih.gov/pubmed/36061417 http://dx.doi.org/10.1016/j.asoc.2022.109576 |
_version_ | 1784777176850104320 |
---|---|
author | Biswas, Amiya Roy, Sankar Kumar Mondal, Sankar Prasad |
author_facet | Biswas, Amiya Roy, Sankar Kumar Mondal, Sankar Prasad |
author_sort | Biswas, Amiya |
collection | PubMed |
description | In recent times, COVID-19 pandemic has posed certain challenges to transportation companies due to the restrictions imposed by different countries during the lockdown. These restrictions cause delay and/ or reduction in the number of trips of vehicles, especially, to the regions with higher restrictions. In a pandemic scenario, regions are categorized into different groups based on the levels of restrictions imposed on the movement of vehicles based on the number of active cases (i.e., number of people infected by COVID-19), number of deaths, population, number of COVID-19 hospitals, etc. The aim of this study is to formulate and solve a fixed-charge transportation problem (FCTP) during this pandemic scenario and to obtain transportation scheme with minimum transportation cost in minimum number of trips of vehicles moving between regions with higher levels of restrictions. For this, a penalty is imposed in the objective function based on the category of the region(s) where the origin and destination are situated. However, reduction in the number of trips of vehicles may increase the transportation cost to unrealistic bounds and so, to keep the transportation cost within limits, a constraint is imposed on the proposed model. To solve the problem, the Genetic Algorithm (GA) has been modified accordingly. For this purpose, we have designed a new crossover operator and a new mutation operator to handle multiple trips and capacity constraints of vehicles. For numerical illustration, in this study, we have solved five example problems considering three levels of restrictions, for which the datasets are generated artificially. To show the effectiveness of the constraint imposed for reducing the transportation cost, the same example problems are then solved without the constraint and the results are analyzed. A comparison of results with existing algorithms proves that our algorithm is effective. Finally, some future research directions are discussed. |
format | Online Article Text |
id | pubmed-9419443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94194432022-08-30 Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario Biswas, Amiya Roy, Sankar Kumar Mondal, Sankar Prasad Appl Soft Comput Article In recent times, COVID-19 pandemic has posed certain challenges to transportation companies due to the restrictions imposed by different countries during the lockdown. These restrictions cause delay and/ or reduction in the number of trips of vehicles, especially, to the regions with higher restrictions. In a pandemic scenario, regions are categorized into different groups based on the levels of restrictions imposed on the movement of vehicles based on the number of active cases (i.e., number of people infected by COVID-19), number of deaths, population, number of COVID-19 hospitals, etc. The aim of this study is to formulate and solve a fixed-charge transportation problem (FCTP) during this pandemic scenario and to obtain transportation scheme with minimum transportation cost in minimum number of trips of vehicles moving between regions with higher levels of restrictions. For this, a penalty is imposed in the objective function based on the category of the region(s) where the origin and destination are situated. However, reduction in the number of trips of vehicles may increase the transportation cost to unrealistic bounds and so, to keep the transportation cost within limits, a constraint is imposed on the proposed model. To solve the problem, the Genetic Algorithm (GA) has been modified accordingly. For this purpose, we have designed a new crossover operator and a new mutation operator to handle multiple trips and capacity constraints of vehicles. For numerical illustration, in this study, we have solved five example problems considering three levels of restrictions, for which the datasets are generated artificially. To show the effectiveness of the constraint imposed for reducing the transportation cost, the same example problems are then solved without the constraint and the results are analyzed. A comparison of results with existing algorithms proves that our algorithm is effective. Finally, some future research directions are discussed. Elsevier B.V. 2022-11 2022-08-27 /pmc/articles/PMC9419443/ /pubmed/36061417 http://dx.doi.org/10.1016/j.asoc.2022.109576 Text en © 2022 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Biswas, Amiya Roy, Sankar Kumar Mondal, Sankar Prasad Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title | Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title_full | Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title_fullStr | Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title_full_unstemmed | Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title_short | Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
title_sort | evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419443/ https://www.ncbi.nlm.nih.gov/pubmed/36061417 http://dx.doi.org/10.1016/j.asoc.2022.109576 |
work_keys_str_mv | AT biswasamiya evolutionaryalgorithmbasedapproachforsolvingtransportationproblemsinnormalandpandemicscenario AT roysankarkumar evolutionaryalgorithmbasedapproachforsolvingtransportationproblemsinnormalandpandemicscenario AT mondalsankarprasad evolutionaryalgorithmbasedapproachforsolvingtransportationproblemsinnormalandpandemicscenario |