Cargando…
Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications
Semi-conductor quantum dots (QDs) are favorite candidates for many applications especially for potential use as optical bioimaging agents. But the major issue of QDs is toxicity. In the present study, carbon nanodots were synthesized using a green hydrothermal approach from gelatin protein using a p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419553/ https://www.ncbi.nlm.nih.gov/pubmed/36133618 http://dx.doi.org/10.1039/c9na00164f |
_version_ | 1784777203108544512 |
---|---|
author | Amjad, Mishal Iqbal, Maheen Faisal, Amir Junjua, Arshad Mahmood Hussain, Irshad Hussain, Syed Zajif Ghramh, Hamed A. Khan, Khalid Ali Janjua, Hussnain Ahmed |
author_facet | Amjad, Mishal Iqbal, Maheen Faisal, Amir Junjua, Arshad Mahmood Hussain, Irshad Hussain, Syed Zajif Ghramh, Hamed A. Khan, Khalid Ali Janjua, Hussnain Ahmed |
author_sort | Amjad, Mishal |
collection | PubMed |
description | Semi-conductor quantum dots (QDs) are favorite candidates for many applications especially for potential use as optical bioimaging agents. But the major issue of QDs is toxicity. In the present study, carbon nanodots were synthesized using a green hydrothermal approach from gelatin protein using a previously established protocol. However, the PL properties and applications of the as-synthesized CG (bovine gelatin) nanodots were remarkably different from those of previously reported gelatin carbon dots. CG (bovine gelatin) nanodots had sizes greater than the Bohr exciton radius but still had QD like fluorescence characteristics. Furthermore, the results from fluorescence spectroscopy demonstrated a tunable PL emission profile at various excitation wavelengths. Second, carbon nanodots were also synthesized from algal biomass of Pectinodesmus sp. via a green hydrothermal approach, denoted as CA (PHM3 algae) nanodots. A study of the PL properties and surface chemical composition of CG (bovine gelatin) and CA (PHM3 algae) nanodots suggested that the surface chemical composition significantly alters the surface states which directly influence their PL properties. CG (bovine gelatin) nanodots were used for imaging of plant and bacterial cells with good imaging sensitivity comparable to toxic semiconductor quantum dots. Moreover, the results from in vitro studies suggested good anticancer properties of CA (PHM3 algae) and CG (bovine gelatin) nanodots with minimum GI50 values of 0.316 ± 0.447 ng ml(−1) (n = 2) and 8.156 ± 6.596 ng ml(−1) (n = 2) for HCC 1954 (breast cancer) and 0.542 ± 0.715 ng ml(−1) (n = 2) and 23.860 ± 14.524 ng ml(−1) (n = 2) for HCT 116 (colorectal cancer) cell lines, respectively. |
format | Online Article Text |
id | pubmed-9419553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94195532022-09-20 Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications Amjad, Mishal Iqbal, Maheen Faisal, Amir Junjua, Arshad Mahmood Hussain, Irshad Hussain, Syed Zajif Ghramh, Hamed A. Khan, Khalid Ali Janjua, Hussnain Ahmed Nanoscale Adv Chemistry Semi-conductor quantum dots (QDs) are favorite candidates for many applications especially for potential use as optical bioimaging agents. But the major issue of QDs is toxicity. In the present study, carbon nanodots were synthesized using a green hydrothermal approach from gelatin protein using a previously established protocol. However, the PL properties and applications of the as-synthesized CG (bovine gelatin) nanodots were remarkably different from those of previously reported gelatin carbon dots. CG (bovine gelatin) nanodots had sizes greater than the Bohr exciton radius but still had QD like fluorescence characteristics. Furthermore, the results from fluorescence spectroscopy demonstrated a tunable PL emission profile at various excitation wavelengths. Second, carbon nanodots were also synthesized from algal biomass of Pectinodesmus sp. via a green hydrothermal approach, denoted as CA (PHM3 algae) nanodots. A study of the PL properties and surface chemical composition of CG (bovine gelatin) and CA (PHM3 algae) nanodots suggested that the surface chemical composition significantly alters the surface states which directly influence their PL properties. CG (bovine gelatin) nanodots were used for imaging of plant and bacterial cells with good imaging sensitivity comparable to toxic semiconductor quantum dots. Moreover, the results from in vitro studies suggested good anticancer properties of CA (PHM3 algae) and CG (bovine gelatin) nanodots with minimum GI50 values of 0.316 ± 0.447 ng ml(−1) (n = 2) and 8.156 ± 6.596 ng ml(−1) (n = 2) for HCC 1954 (breast cancer) and 0.542 ± 0.715 ng ml(−1) (n = 2) and 23.860 ± 14.524 ng ml(−1) (n = 2) for HCT 116 (colorectal cancer) cell lines, respectively. RSC 2019-06-14 /pmc/articles/PMC9419553/ /pubmed/36133618 http://dx.doi.org/10.1039/c9na00164f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Amjad, Mishal Iqbal, Maheen Faisal, Amir Junjua, Arshad Mahmood Hussain, Irshad Hussain, Syed Zajif Ghramh, Hamed A. Khan, Khalid Ali Janjua, Hussnain Ahmed Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title | Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title_full | Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title_fullStr | Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title_full_unstemmed | Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title_short | Hydrothermal synthesis of carbon nanodots from bovine gelatin and PHM3 microalgae strain for anticancer and bioimaging applications |
title_sort | hydrothermal synthesis of carbon nanodots from bovine gelatin and phm3 microalgae strain for anticancer and bioimaging applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419553/ https://www.ncbi.nlm.nih.gov/pubmed/36133618 http://dx.doi.org/10.1039/c9na00164f |
work_keys_str_mv | AT amjadmishal hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT iqbalmaheen hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT faisalamir hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT junjuaarshadmahmood hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT hussainirshad hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT hussainsyedzajif hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT ghramhhameda hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT khankhalidali hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications AT janjuahussnainahmed hydrothermalsynthesisofcarbonnanodotsfrombovinegelatinandphm3microalgaestrainforanticancerandbioimagingapplications |