Cargando…

Stabilization of reduced copper on ceria aerogels for CO oxidation

Photodeposition of Cu nanoparticles on ceria (CeO(2)) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical fact...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitman, Catherine L., Pennington, Ashley M., Brintlinger, Todd H., Barlow, Daniel E., Esparraguera, Liam F., Stroud, Rhonda M., Pietron, Jeremy J., DeSario, Paul A., Rolison, Debra R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419587/
https://www.ncbi.nlm.nih.gov/pubmed/36132898
http://dx.doi.org/10.1039/d0na00594k
_version_ 1784777211113373696
author Pitman, Catherine L.
Pennington, Ashley M.
Brintlinger, Todd H.
Barlow, Daniel E.
Esparraguera, Liam F.
Stroud, Rhonda M.
Pietron, Jeremy J.
DeSario, Paul A.
Rolison, Debra R.
author_facet Pitman, Catherine L.
Pennington, Ashley M.
Brintlinger, Todd H.
Barlow, Daniel E.
Esparraguera, Liam F.
Stroud, Rhonda M.
Pietron, Jeremy J.
DeSario, Paul A.
Rolison, Debra R.
author_sort Pitman, Catherine L.
collection PubMed
description Photodeposition of Cu nanoparticles on ceria (CeO(2)) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu(0). At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy. Analysis of Cu/CeO(2) using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy finds a mixture of Cu(2+), Cu(+), and Cu(0), with Cu(+) at the surface. At 5 wt% Cu, Cu/CeO(2) aerogels exhibit high activity for heterogeneous CO oxidation catalysis at low temperatures (94% conversion of CO at 150 °C), substantially out-performing Cu/TiO(2) aerogel catalysts featuring the same weight loading of Cu on TiO(2) (20% conversion of CO at 150 °C). The present study demonstrates an extension of our previous concept of stabilizing catalytic Cu nanoparticles in low oxidation states on reducing, high surface area aerogel supports. Changing the reducing power of the support modulates the catalytic activity of mixed-valent Cu nanoparticles and metal oxide support.
format Online
Article
Text
id pubmed-9419587
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94195872022-09-20 Stabilization of reduced copper on ceria aerogels for CO oxidation Pitman, Catherine L. Pennington, Ashley M. Brintlinger, Todd H. Barlow, Daniel E. Esparraguera, Liam F. Stroud, Rhonda M. Pietron, Jeremy J. DeSario, Paul A. Rolison, Debra R. Nanoscale Adv Chemistry Photodeposition of Cu nanoparticles on ceria (CeO(2)) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu(0). At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy. Analysis of Cu/CeO(2) using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy finds a mixture of Cu(2+), Cu(+), and Cu(0), with Cu(+) at the surface. At 5 wt% Cu, Cu/CeO(2) aerogels exhibit high activity for heterogeneous CO oxidation catalysis at low temperatures (94% conversion of CO at 150 °C), substantially out-performing Cu/TiO(2) aerogel catalysts featuring the same weight loading of Cu on TiO(2) (20% conversion of CO at 150 °C). The present study demonstrates an extension of our previous concept of stabilizing catalytic Cu nanoparticles in low oxidation states on reducing, high surface area aerogel supports. Changing the reducing power of the support modulates the catalytic activity of mixed-valent Cu nanoparticles and metal oxide support. RSC 2020-09-03 /pmc/articles/PMC9419587/ /pubmed/36132898 http://dx.doi.org/10.1039/d0na00594k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Pitman, Catherine L.
Pennington, Ashley M.
Brintlinger, Todd H.
Barlow, Daniel E.
Esparraguera, Liam F.
Stroud, Rhonda M.
Pietron, Jeremy J.
DeSario, Paul A.
Rolison, Debra R.
Stabilization of reduced copper on ceria aerogels for CO oxidation
title Stabilization of reduced copper on ceria aerogels for CO oxidation
title_full Stabilization of reduced copper on ceria aerogels for CO oxidation
title_fullStr Stabilization of reduced copper on ceria aerogels for CO oxidation
title_full_unstemmed Stabilization of reduced copper on ceria aerogels for CO oxidation
title_short Stabilization of reduced copper on ceria aerogels for CO oxidation
title_sort stabilization of reduced copper on ceria aerogels for co oxidation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419587/
https://www.ncbi.nlm.nih.gov/pubmed/36132898
http://dx.doi.org/10.1039/d0na00594k
work_keys_str_mv AT pitmancatherinel stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT penningtonashleym stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT brintlingertoddh stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT barlowdaniele stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT esparragueraliamf stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT stroudrhondam stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT pietronjeremyj stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT desariopaula stabilizationofreducedcopperonceriaaerogelsforcooxidation
AT rolisondebrar stabilizationofreducedcopperonceriaaerogelsforcooxidation