Cargando…
Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination
Semiconductor nanoparticles (SNPs) are excellent candidates for various applications in fields like solar cells, light emitting diodes or sensors. Their size strongly determines their properties, thus characterizing their size is crucial for applications. In most cases, they are included in complex...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419589/ https://www.ncbi.nlm.nih.gov/pubmed/36133566 http://dx.doi.org/10.1039/c9na00344d |
_version_ | 1784777211592572928 |
---|---|
author | Onna, Diego Perez Ipiña, Ignacio Fernández Casafuz, Agustina Mayoral, Álvaro Ibarra García, M. Ricardo Bilmes, Sara A. Martínez Ricci, María Luz |
author_facet | Onna, Diego Perez Ipiña, Ignacio Fernández Casafuz, Agustina Mayoral, Álvaro Ibarra García, M. Ricardo Bilmes, Sara A. Martínez Ricci, María Luz |
author_sort | Onna, Diego |
collection | PubMed |
description | Semiconductor nanoparticles (SNPs) are excellent candidates for various applications in fields like solar cells, light emitting diodes or sensors. Their size strongly determines their properties, thus characterizing their size is crucial for applications. In most cases, they are included in complex matrices which make it difficult to determine their average diameter and statistical distribution. In this work, we present a non-destructive, cheap and in situ procedure to calculate particle size distributions (PSDs) of SNPs in different media based on deconvolution of the absorbance spectrum with a database of the absorbance spectra of SNPs with different sizes. The method was validated against the SNP sizes obtained from transmission microscopy images, showing excellent agreement between both distributions. In particular, CdS SNPs embedded in mesoporous thin films were analyzed in detail. Additional composite systems were studied in order to extend the method to SNPs in polymers or bacteria, proving that it applies to several SNPs in diverse matrices. The PSDs obtained from the proposed method do not show any statistical difference with the one derived from TEM images. Finally, a web app that implements the methodology of this work has been developed. |
format | Online Article Text |
id | pubmed-9419589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94195892022-09-20 Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination Onna, Diego Perez Ipiña, Ignacio Fernández Casafuz, Agustina Mayoral, Álvaro Ibarra García, M. Ricardo Bilmes, Sara A. Martínez Ricci, María Luz Nanoscale Adv Chemistry Semiconductor nanoparticles (SNPs) are excellent candidates for various applications in fields like solar cells, light emitting diodes or sensors. Their size strongly determines their properties, thus characterizing their size is crucial for applications. In most cases, they are included in complex matrices which make it difficult to determine their average diameter and statistical distribution. In this work, we present a non-destructive, cheap and in situ procedure to calculate particle size distributions (PSDs) of SNPs in different media based on deconvolution of the absorbance spectrum with a database of the absorbance spectra of SNPs with different sizes. The method was validated against the SNP sizes obtained from transmission microscopy images, showing excellent agreement between both distributions. In particular, CdS SNPs embedded in mesoporous thin films were analyzed in detail. Additional composite systems were studied in order to extend the method to SNPs in polymers or bacteria, proving that it applies to several SNPs in diverse matrices. The PSDs obtained from the proposed method do not show any statistical difference with the one derived from TEM images. Finally, a web app that implements the methodology of this work has been developed. RSC 2019-07-11 /pmc/articles/PMC9419589/ /pubmed/36133566 http://dx.doi.org/10.1039/c9na00344d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Onna, Diego Perez Ipiña, Ignacio Fernández Casafuz, Agustina Mayoral, Álvaro Ibarra García, M. Ricardo Bilmes, Sara A. Martínez Ricci, María Luz Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title | Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title_full | Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title_fullStr | Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title_full_unstemmed | Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title_short | Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination |
title_sort | diameter distribution by deconvolution (ddd): absorption spectra as a practical tool for semiconductor nanoparticle psd determination |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419589/ https://www.ncbi.nlm.nih.gov/pubmed/36133566 http://dx.doi.org/10.1039/c9na00344d |
work_keys_str_mv | AT onnadiego diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT perezipinaignacio diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT fernandezcasafuzagustina diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT mayoralalvaro diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT ibarragarciamricardo diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT bilmessaraa diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination AT martinezriccimarialuz diameterdistributionbydeconvolutiondddabsorptionspectraasapracticaltoolforsemiconductornanoparticlepsddetermination |