Cargando…
Self-supervised region-aware segmentation of COVID-19 CT images using 3D GAN and contrastive learning
Medical image segmentation is a key initial step in several therapeutic applications. While most of the automatic segmentation models are supervised, which require a well-annotated paired dataset, we introduce a novel annotation-free pipeline to perform segmentation of COVID-19 CT images. Our pipeli...
Autores principales: | Shabani, Siyavash, Homayounfar, Morteza, Vardhanabhuti, Varut, Nikouei Mahani, Mohammad-Ali, Koohi-Moghadam, Mohamad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419627/ https://www.ncbi.nlm.nih.gov/pubmed/36041270 http://dx.doi.org/10.1016/j.compbiomed.2022.106033 |
Ejemplares similares
-
A Multimodal Deep Learning Approach to Predicting Systemic Diseases from Oral Conditions
por: Zhao, Dan, et al.
Publicado: (2022) -
Early stage NSCLS patients’ prognostic prediction with multi-information using transformer and graph neural network model
por: Lian, Jie, et al.
Publicado: (2022) -
CT scan AI-aided triage for patients with COVID-19 in China
por: Vardhanabhuti, Varut
Publicado: (2020) -
Differential Impact of COVID-19 on Cancer Diagnostic Services Based on Body Regions: A Public Facility-Based Study in Hong Kong
por: Vardhanabhuti, Varut, et al.
Publicado: (2021) -
Photon-Counting CT Material Decomposition in Bone Imaging
por: Bhattarai, Abhisek, et al.
Publicado: (2023)