Cargando…
Predicting hydration layers on surfaces using deep learning
Characterisation of the nanoscale interface formed between minerals and water is essential to the understanding of natural processes, such as biomineralization, and to develop new technologies where function is dominated by the mineral–water interface. Atomic force microscopy offers the potential to...
Autores principales: | Ranawat, Yashasvi S., Jaques, Ygor M., Foster, Adam S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419798/ https://www.ncbi.nlm.nih.gov/pubmed/36133729 http://dx.doi.org/10.1039/d1na00253h |
Ejemplares similares
-
Efficient Machine-Learning-Aided Screening of Hydrogen
Adsorption on Bimetallic Nanoclusters
por: Jäger, Marc O. J., et al.
Publicado: (2020) -
Differences
in Molecular Adsorption Emanating from
the (2 × 1) Reconstruction of Calcite(104)
por: Heggemann, Jonas, et al.
Publicado: (2023) -
Surface hydration for antifouling and bio-adhesion
por: Del Grosso, Chelsey A., et al.
Publicado: (2020) -
Energy dissipation of nanoconfined hydration layer: Long-range hydration on the hydrophilic solid surface
por: Kim, Bongsu, et al.
Publicado: (2014) -
Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
por: Cova, Tânia F. G. G., et al.
Publicado: (2019)