Cargando…
Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419847/ https://www.ncbi.nlm.nih.gov/pubmed/36132738 http://dx.doi.org/10.1039/c9na00203k |
_version_ | 1784777271022714880 |
---|---|
author | Düttmann, Anke Bottke, Patrick Plaggenborg, Thorsten Gutsche, Christian Parisi, Jürgen Knipper, Martin Kolny-Olesiak, Joanna |
author_facet | Düttmann, Anke Bottke, Patrick Plaggenborg, Thorsten Gutsche, Christian Parisi, Jürgen Knipper, Martin Kolny-Olesiak, Joanna |
author_sort | Düttmann, Anke |
collection | PubMed |
description | Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni(3)Sn(4) nanoparticles convert to hybrid structured Ni(2)SnP and β-Sn. The CoSn(2) and FeSn(2) nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni(2)SnP in literature. We were able to locate the Ni(2)SnP and β-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co–Sn–P and binary Fe–P and FeSn(2) compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M–Sn nanoparticles through phosphorization. |
format | Online Article Text |
id | pubmed-9419847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94198472022-09-20 Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals Düttmann, Anke Bottke, Patrick Plaggenborg, Thorsten Gutsche, Christian Parisi, Jürgen Knipper, Martin Kolny-Olesiak, Joanna Nanoscale Adv Chemistry Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni(3)Sn(4) nanoparticles convert to hybrid structured Ni(2)SnP and β-Sn. The CoSn(2) and FeSn(2) nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni(2)SnP in literature. We were able to locate the Ni(2)SnP and β-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co–Sn–P and binary Fe–P and FeSn(2) compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M–Sn nanoparticles through phosphorization. RSC 2019-05-24 /pmc/articles/PMC9419847/ /pubmed/36132738 http://dx.doi.org/10.1039/c9na00203k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Düttmann, Anke Bottke, Patrick Plaggenborg, Thorsten Gutsche, Christian Parisi, Jürgen Knipper, Martin Kolny-Olesiak, Joanna Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title | Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title_full | Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title_fullStr | Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title_full_unstemmed | Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title_short | Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
title_sort | converting bimetallic m (m = ni, co, or fe)–sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419847/ https://www.ncbi.nlm.nih.gov/pubmed/36132738 http://dx.doi.org/10.1039/c9na00203k |
work_keys_str_mv | AT duttmannanke convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT bottkepatrick convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT plaggenborgthorsten convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT gutschechristian convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT parisijurgen convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT knippermartin convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals AT kolnyolesiakjoanna convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals |