Cargando…

Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals

Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe)...

Descripción completa

Detalles Bibliográficos
Autores principales: Düttmann, Anke, Bottke, Patrick, Plaggenborg, Thorsten, Gutsche, Christian, Parisi, Jürgen, Knipper, Martin, Kolny-Olesiak, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419847/
https://www.ncbi.nlm.nih.gov/pubmed/36132738
http://dx.doi.org/10.1039/c9na00203k
_version_ 1784777271022714880
author Düttmann, Anke
Bottke, Patrick
Plaggenborg, Thorsten
Gutsche, Christian
Parisi, Jürgen
Knipper, Martin
Kolny-Olesiak, Joanna
author_facet Düttmann, Anke
Bottke, Patrick
Plaggenborg, Thorsten
Gutsche, Christian
Parisi, Jürgen
Knipper, Martin
Kolny-Olesiak, Joanna
author_sort Düttmann, Anke
collection PubMed
description Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni(3)Sn(4) nanoparticles convert to hybrid structured Ni(2)SnP and β-Sn. The CoSn(2) and FeSn(2) nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni(2)SnP in literature. We were able to locate the Ni(2)SnP and β-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co–Sn–P and binary Fe–P and FeSn(2) compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M–Sn nanoparticles through phosphorization.
format Online
Article
Text
id pubmed-9419847
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94198472022-09-20 Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals Düttmann, Anke Bottke, Patrick Plaggenborg, Thorsten Gutsche, Christian Parisi, Jürgen Knipper, Martin Kolny-Olesiak, Joanna Nanoscale Adv Chemistry Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M–Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni(3)Sn(4) nanoparticles convert to hybrid structured Ni(2)SnP and β-Sn. The CoSn(2) and FeSn(2) nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni(2)SnP in literature. We were able to locate the Ni(2)SnP and β-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co–Sn–P and binary Fe–P and FeSn(2) compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M–Sn nanoparticles through phosphorization. RSC 2019-05-24 /pmc/articles/PMC9419847/ /pubmed/36132738 http://dx.doi.org/10.1039/c9na00203k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Düttmann, Anke
Bottke, Patrick
Plaggenborg, Thorsten
Gutsche, Christian
Parisi, Jürgen
Knipper, Martin
Kolny-Olesiak, Joanna
Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title_full Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title_fullStr Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title_full_unstemmed Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title_short Converting bimetallic M (M = Ni, Co, or Fe)–Sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
title_sort converting bimetallic m (m = ni, co, or fe)–sn nanoparticles into phosphides: a general strategy for the synthesis of ternary metal phosphide nanocrystals
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419847/
https://www.ncbi.nlm.nih.gov/pubmed/36132738
http://dx.doi.org/10.1039/c9na00203k
work_keys_str_mv AT duttmannanke convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT bottkepatrick convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT plaggenborgthorsten convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT gutschechristian convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT parisijurgen convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT knippermartin convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals
AT kolnyolesiakjoanna convertingbimetallicmmnicoorfesnnanoparticlesintophosphidesageneralstrategyforthesynthesisofternarymetalphosphidenanocrystals