Cargando…

On-surface chemistry using local high electric fields

Dihydrotetraazapentacene (DHTAP) molecules can be dehydrogenated on the surface to form tetraazapentacene (TAP), by applying a high electric field between the tip of a scanning tunnelling microscope (STM) and a metallic substrate in the zero-current limit. The method can be applied either to single...

Descripción completa

Detalles Bibliográficos
Autores principales: Leoni, Thomas, Lelaidier, Tony, Thomas, Anthony, Ranguis, Alain, Siri, Olivier, Attaccalite, Claudio, Becker, Conrad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419876/
https://www.ncbi.nlm.nih.gov/pubmed/36133257
http://dx.doi.org/10.1039/d1na00383f
_version_ 1784777277394911232
author Leoni, Thomas
Lelaidier, Tony
Thomas, Anthony
Ranguis, Alain
Siri, Olivier
Attaccalite, Claudio
Becker, Conrad
author_facet Leoni, Thomas
Lelaidier, Tony
Thomas, Anthony
Ranguis, Alain
Siri, Olivier
Attaccalite, Claudio
Becker, Conrad
author_sort Leoni, Thomas
collection PubMed
description Dihydrotetraazapentacene (DHTAP) molecules can be dehydrogenated on the surface to form tetraazapentacene (TAP), by applying a high electric field between the tip of a scanning tunnelling microscope (STM) and a metallic substrate in the zero-current limit. The method can be applied either to single molecules or more extended layers by successively scanning a selected area using an STM tip.
format Online
Article
Text
id pubmed-9419876
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94198762022-09-20 On-surface chemistry using local high electric fields Leoni, Thomas Lelaidier, Tony Thomas, Anthony Ranguis, Alain Siri, Olivier Attaccalite, Claudio Becker, Conrad Nanoscale Adv Chemistry Dihydrotetraazapentacene (DHTAP) molecules can be dehydrogenated on the surface to form tetraazapentacene (TAP), by applying a high electric field between the tip of a scanning tunnelling microscope (STM) and a metallic substrate in the zero-current limit. The method can be applied either to single molecules or more extended layers by successively scanning a selected area using an STM tip. RSC 2021-08-07 /pmc/articles/PMC9419876/ /pubmed/36133257 http://dx.doi.org/10.1039/d1na00383f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Leoni, Thomas
Lelaidier, Tony
Thomas, Anthony
Ranguis, Alain
Siri, Olivier
Attaccalite, Claudio
Becker, Conrad
On-surface chemistry using local high electric fields
title On-surface chemistry using local high electric fields
title_full On-surface chemistry using local high electric fields
title_fullStr On-surface chemistry using local high electric fields
title_full_unstemmed On-surface chemistry using local high electric fields
title_short On-surface chemistry using local high electric fields
title_sort on-surface chemistry using local high electric fields
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419876/
https://www.ncbi.nlm.nih.gov/pubmed/36133257
http://dx.doi.org/10.1039/d1na00383f
work_keys_str_mv AT leonithomas onsurfacechemistryusinglocalhighelectricfields
AT lelaidiertony onsurfacechemistryusinglocalhighelectricfields
AT thomasanthony onsurfacechemistryusinglocalhighelectricfields
AT ranguisalain onsurfacechemistryusinglocalhighelectricfields
AT siriolivier onsurfacechemistryusinglocalhighelectricfields
AT attaccaliteclaudio onsurfacechemistryusinglocalhighelectricfields
AT beckerconrad onsurfacechemistryusinglocalhighelectricfields