Cargando…
Computational Analysis of High-Dimensional DNA Methylation Data for Cancer Prognosis
Developing cancer prognostic models using multiomics data is a major goal of precision oncology. DNA methylation provides promising prognostic biomarkers, which have been used to predict survival and treatment response in solid tumor or plasma samples. This review article presents an overview of rec...
Autores principales: | Hu, Ran, Zhou, Xianghong Jasmine, Li, Wenyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419965/ https://www.ncbi.nlm.nih.gov/pubmed/35671506 http://dx.doi.org/10.1089/cmb.2022.0002 |
Ejemplares similares
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
por: Zhang, Shihua, et al.
Publicado: (2012) -
Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
por: Li, Wenyuan, et al.
Publicado: (2012) -
CancerDetector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data
por: Li, Wenyuan, et al.
Publicado: (2018) -
Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
por: Li, Wenyuan, et al.
Publicado: (2011) -
Methods for Mediation Analysis with High-Dimensional DNA Methylation Data: Possible Choices and Comparison
por: Clark-Boucher, Dylan, et al.
Publicado: (2023)