Cargando…
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best perf...
Autores principales: | Zhu, Hao, Forenzo, Dylan, He, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420068/ https://www.ncbi.nlm.nih.gov/pubmed/35951573 http://dx.doi.org/10.1109/TNSRE.2022.3198041 |
Ejemplares similares
-
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
por: Padfield, Natasha, et al.
Publicado: (2019)