Cargando…
Transfer learning strategies for solar power forecasting under data scarcity
Accurately forecasting solar plants production is critical for balancing supply and demand and for scheduling distribution networks operation in the context of inclusive smart cities and energy communities. However, the problem becomes more demanding, when there is insufficient amount of data to ade...
Autores principales: | Sarmas, Elissaios, Dimitropoulos, Nikos, Marinakis, Vangelis, Mylona, Zoi, Doukas, Haris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420121/ https://www.ncbi.nlm.nih.gov/pubmed/36030346 http://dx.doi.org/10.1038/s41598-022-18516-x |
Ejemplares similares
-
Improving energy performance of buildings: Dataset of implemented energy efficiency renovation projects in Latvia
por: Sarmas, Elissaios, et al.
Publicado: (2023) -
Multicriteria portfolio construction with Python
por: Sarmas, Elissaios, et al.
Publicado: (2020) -
An Advanced IoT-based System for Intelligent Energy Management in Buildings
por: Marinakis, Vangelis, et al.
Publicado: (2018) -
From Intelligent Energy Management to Value Economy through a Digital Energy Currency: Bahrain City Case Study
por: Marinakis, Vangelis, et al.
Publicado: (2020) -
Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants
por: Moreno, Guillermo, et al.
Publicado: (2021)