Cargando…
An ultra-sensitive and specific nanoplasmonic-enhanced isothermal amplification platform for the ultrafast point-of-care testing of SARS-CoV-2
The novel mutations attributed by the high mutagenicity of the SARS-CoV-2 makes its prevention and treatment challenging. Developing an ultra-fast, point-of-care-test (POCT) protocol is critical for responding to large-scale spread of SARS-CoV-2 in public places and in resource-poor remote areas. He...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420202/ https://www.ncbi.nlm.nih.gov/pubmed/36060034 http://dx.doi.org/10.1016/j.cej.2022.138822 |
Sumario: | The novel mutations attributed by the high mutagenicity of the SARS-CoV-2 makes its prevention and treatment challenging. Developing an ultra-fast, point-of-care-test (POCT) protocol is critical for responding to large-scale spread of SARS-CoV-2 in public places and in resource-poor remote areas. Here, we developed a nanoplasmonic enhanced isothermal amplification (NanoPEIA) strategy that combines a nanoplasmonic sensor with isothermal amplification. The novel strategy provides an ideal easy-to operate detection platform for obtaining accurate, ultra-fast and high-throughput (96 samples can be tested together) data. For clinical samples with viral detection at Ct value <25, the entire process (including sample preparation, virus lysis, detection, and data analysis) can be completed within six minutes. The method is also appropriate for detection of SARS-CoV-2 γ-coronavirus mutants. The NanoPEIA method was validated using clinical samples from 21 patients with SARS-CoV-2 infection and 31 healthy individuals. The detection result on the 52 clinical samples for SARS-CoV-2 showed that the NanoPEIA platform had a 100% sensitivity for N and orf1ab genes, which was higher than those obtained using RT-qPCR (88.9% and 90.0%, respectively). The specificities of 31 clinical negative samples were 92.3% and 91.7% for the N gene and the orf1ab gene, respectively. The limits of detection (LoD) of the clinical samples were 28.3 copies/mL and 23.3 copies/mL for the N gene and the orf1ab gene, respectively. The efficient NanoPEIA detection strategy facilitates real-time detection and visualization within ultrashort durations and can be applied for POCT diagnosis in resource-poor and highly populated areas. |
---|