Cargando…

Programmable molecular circuit discriminates multidrug-resistant bacteria

Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaolin, Qin, Weichao, Yuan, Rui, Zhang, Liangliang, Wang, Liangting, Ding, Ke, Liu, Ruining, Huang, Wanyun, Zhang, Hong, Luo, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420371/
https://www.ncbi.nlm.nih.gov/pubmed/36042850
http://dx.doi.org/10.1016/j.mtbio.2022.100379
_version_ 1784777374228807680
author Hu, Xiaolin
Qin, Weichao
Yuan, Rui
Zhang, Liangliang
Wang, Liangting
Ding, Ke
Liu, Ruining
Huang, Wanyun
Zhang, Hong
Luo, Yang
author_facet Hu, Xiaolin
Qin, Weichao
Yuan, Rui
Zhang, Liangliang
Wang, Liangting
Ding, Ke
Liu, Ruining
Huang, Wanyun
Zhang, Hong
Luo, Yang
author_sort Hu, Xiaolin
collection PubMed
description Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method provides a near-zero background signal by integrating four inherent modules equivalent to the conversion, amplification, separation, and reading modules. Interference elimination is largely owing to a molybdenum disulfide nanosheets-based fluorescence nanoswitch and non-specific suppression mediated by molecular inhibitors. In less than 70 ​min, an accurate distinction of various MDR bacteria was achieved without bacterial lysis. The BRICK technique detected 6.73 ​CFU/mL of methicillin-resistant Staphylococcus aureus in clinical samples in a proof-of-concept trial. By simply reprogramming the sequence panel, such a high signal-to-noise characteristic has been proven in the four other superbugs. The proposed BRICK method can provide a universal platform for infection surveillance and environmental management thanks to its superior programmability.
format Online
Article
Text
id pubmed-9420371
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-94203712022-08-29 Programmable molecular circuit discriminates multidrug-resistant bacteria Hu, Xiaolin Qin, Weichao Yuan, Rui Zhang, Liangliang Wang, Liangting Ding, Ke Liu, Ruining Huang, Wanyun Zhang, Hong Luo, Yang Mater Today Bio Full Length Article Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method provides a near-zero background signal by integrating four inherent modules equivalent to the conversion, amplification, separation, and reading modules. Interference elimination is largely owing to a molybdenum disulfide nanosheets-based fluorescence nanoswitch and non-specific suppression mediated by molecular inhibitors. In less than 70 ​min, an accurate distinction of various MDR bacteria was achieved without bacterial lysis. The BRICK technique detected 6.73 ​CFU/mL of methicillin-resistant Staphylococcus aureus in clinical samples in a proof-of-concept trial. By simply reprogramming the sequence panel, such a high signal-to-noise characteristic has been proven in the four other superbugs. The proposed BRICK method can provide a universal platform for infection surveillance and environmental management thanks to its superior programmability. Elsevier 2022-08-11 /pmc/articles/PMC9420371/ /pubmed/36042850 http://dx.doi.org/10.1016/j.mtbio.2022.100379 Text en © 2022 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Full Length Article
Hu, Xiaolin
Qin, Weichao
Yuan, Rui
Zhang, Liangliang
Wang, Liangting
Ding, Ke
Liu, Ruining
Huang, Wanyun
Zhang, Hong
Luo, Yang
Programmable molecular circuit discriminates multidrug-resistant bacteria
title Programmable molecular circuit discriminates multidrug-resistant bacteria
title_full Programmable molecular circuit discriminates multidrug-resistant bacteria
title_fullStr Programmable molecular circuit discriminates multidrug-resistant bacteria
title_full_unstemmed Programmable molecular circuit discriminates multidrug-resistant bacteria
title_short Programmable molecular circuit discriminates multidrug-resistant bacteria
title_sort programmable molecular circuit discriminates multidrug-resistant bacteria
topic Full Length Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420371/
https://www.ncbi.nlm.nih.gov/pubmed/36042850
http://dx.doi.org/10.1016/j.mtbio.2022.100379
work_keys_str_mv AT huxiaolin programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT qinweichao programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT yuanrui programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT zhangliangliang programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT wangliangting programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT dingke programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT liuruining programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT huangwanyun programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT zhanghong programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria
AT luoyang programmablemolecularcircuitdiscriminatesmultidrugresistantbacteria