Cargando…
An AI-Driven Hybrid Framework for Intrusion Detection in IoT-Enabled E-Health
E-health has grown into a billion-dollar industry in the last decade. Its device's high throughput makes it an obvious target for cyberattacks, and these environments desperately need protection. In this scientific study, we presented an artificial intelligence (AI)-driven software-defined netw...
Autores principales: | Wahab, Fazal, Zhao, Yuhai, Javeed, Danish, Al-Adhaileh, Mosleh Hmoud, Almaaytah, Shahab Ahmad, Khan, Wasiat, Saeed, Muhammad Shahid, Kumar Shah, Rajeev |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420579/ https://www.ncbi.nlm.nih.gov/pubmed/36045979 http://dx.doi.org/10.1155/2022/6096289 |
Ejemplares similares
-
Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion Detection System
por: Husnain, Muhammad, et al.
Publicado: (2022) -
A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT)
por: Javeed, Danish, et al.
Publicado: (2021) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT
por: Khan, Muhammad Almas, et al.
Publicado: (2021) -
FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications
por: Ashraf, Eman, et al.
Publicado: (2022)