Cargando…

Advanced two-stage cascade configurations for energy-efficient –80 °C refrigeration

In response to the COVID-19 pandemic, some vaccines have been developed requiring ultralow-temperature refrigeration, and the number of these freezers has been increased worldwide. Ultralow-temperature refrigeration operates with a significant temperature lift and, hence, a massive decrease in energ...

Descripción completa

Detalles Bibliográficos
Autores principales: Udroiu, Cosmin-Mihai, Mota-Babiloni, Adrián, Navarro-Esbrí, Joaquín
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420590/
https://www.ncbi.nlm.nih.gov/pubmed/36060311
http://dx.doi.org/10.1016/j.enconman.2022.115907
Descripción
Sumario:In response to the COVID-19 pandemic, some vaccines have been developed requiring ultralow-temperature refrigeration, and the number of these freezers has been increased worldwide. Ultralow-temperature refrigeration operates with a significant temperature lift and, hence, a massive decrease in energy performance. Therefore, cascade cycles based on two vapor compression single-stage cycles are traditionally used for these temperatures. This paper proposes the combination of six different cycles (single-stage with and without internal heat exchanger, vapor injection, liquid injection, and parallel compression with and without economizer) in two-stage cascades to analyze the operational and energy performance in ultralow-temperature freezers. All this leads to 42 different configurations in which the intermediate cascade temperature is optimized to maximize the coefficient of performance. Ultra-low global warming potential natural refrigerants such as R-290 (propane) and R-170 (ethane) for the cascade high- and low-temperature stage have been considered. From the thermodynamic analysis, it can be concluded that liquid and vapor injection cascade configurations are the most energy-efficient. More specifically, those containing a vapor injection in the low-temperature stage (0.89 coefficient of performance, 40 % higher than traditional configurations). Then, using an internal heat exchanger for such low temperatures is unnecessary in terms of energy performance. The optimum intermediate cascade temperature varies significantly among cycles, from −37 °C to 2 °C, substantially impacting energy performance. Parallel compression configuration improves energy performance over single-stage cycles, but not as much as multi-stage (between 20 % and 30 % lower coefficient of performance). For most of low-temperature cycles, the high-temperature stage can be based on a single-stage cycle while keeping the maximum coefficient of performance.