Cargando…
High-Resolution Histopathological Image Classification Model Based on Fused Heterogeneous Networks with Self-Supervised Feature Representation
Applying machine learning technology to automatic image analysis and auxiliary diagnosis of whole slide image (WSI) may help to improve the efficiency, objectivity, and consistency of pathological diagnosis. Due to its extremely high resolution, it is still a great challenge to directly process WSI...
Autores principales: | Lai, Zhi-Fei, Zhang, Gang, Zhang, Xiao-Bo, Liu, Hong-Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420597/ https://www.ncbi.nlm.nih.gov/pubmed/36046446 http://dx.doi.org/10.1155/2022/8007713 |
Ejemplares similares
-
Multiscale High-Level Feature Fusion for Histopathological Image Classification
por: Lai, ZhiFei, et al.
Publicado: (2017) -
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse
por: Tan, Congming, et al.
Publicado: (2022) -
Self-supervised sparse coding scheme for image classification based on low rank representation
por: Li, Ao, et al.
Publicado: (2018) -
Renal Cancer Detection: Fusing Deep and Texture Features from Histopathology Images
por: Cai, Jianxiu, et al.
Publicado: (2022) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021)