Cargando…

Characterization and Modeling Quality Analysis of Edible Oils Using Electrochemical Impedance Spectroscopy

The dielectric characteristics of six culinary oils were measured over the frequency range of 0.01 Hz–100 kHz. The results showed that the dielectric constants of oils had the same frequency relationship (i.e., they decreased with increasing frequency). The dielectric constants at lower frequencies...

Descripción completa

Detalles Bibliográficos
Autores principales: Elmosalami, T. A., Kamel, Mahmoud M., Tomashchuk, I., Alzaid, Meshal, Mostafa, Massaud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420615/
https://www.ncbi.nlm.nih.gov/pubmed/36046220
http://dx.doi.org/10.1155/2022/2781450
Descripción
Sumario:The dielectric characteristics of six culinary oils were measured over the frequency range of 0.01 Hz–100 kHz. The results showed that the dielectric constants of oils had the same frequency relationship (i.e., they decreased with increasing frequency). The dielectric constants at lower frequencies for olive oil A, olive oil B, sesame oil, Nigella sativa, sunflower oil, and corn oil are approximately 2.75, 2.5, 2.0, 1.75, 1.5, and 0.9. An FT-IR analysis showed that the spectral differences were very small, because most vegetable oils contain the same type of fatty acids. The model built using COMSOL Multiphysics for the potential and electric field distributions for different oils and used to calculate the dielectric constant was simulated under various conditions in the AC/DC module. The model results were compared with the experimental results, which showed satisfactory convergence between them. The experimental and model results obtained in this study could be useful for evaluating the edible oil quality.