Cargando…

Relating Darcy-Scale Chemical Reaction Order to Pore-Scale Spatial Heterogeneity

Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates measured at different spatial scales. Many reasons for this spatial scaling effect can be given. We investigate one such reason, i.e., how pore-scale spatial heterogeneity in porous media affects overall mineral diss...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Po-Wei, Flemisch, Bernd, Qin, Chao-Zhong, Saar, Martin O., Ebigbo, Anozie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420689/
https://www.ncbi.nlm.nih.gov/pubmed/36051176
http://dx.doi.org/10.1007/s11242-022-01817-0
Descripción
Sumario:Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates measured at different spatial scales. Many reasons for this spatial scaling effect can be given. We investigate one such reason, i.e., how pore-scale spatial heterogeneity in porous media affects overall mineral dissolution rates. Using the bundle-of-tubes model as an analogy for porous media, we show that the Darcy-scale reaction order increases as the statistical similarity between the pore sizes and the effective-surface-area ratio of the porous sample decreases. The analytical results quantify mineral spatial heterogeneity using the Darcy-scale reaction order and give a mechanistic explanation to the usage of reaction order in Darcy-scale modeling. The relation is used as a constitutive relation of reactive transport at the Darcy scale. We test the constitutive relation by simulating flow-through experiments. The proposed constitutive relation is able to model the solute breakthrough curve of the simulations. Our results imply that we can infer mineral spatial heterogeneity of a porous media using measured solute concentration over time in a flow-through dissolution experiment.