Cargando…
The multiscale 3D convolutional network for emotion recognition based on electroencephalogram
Emotion recognition based on EEG (electroencephalogram) has become a research hotspot in the field of brain-computer interfaces (BCI). Compared with traditional machine learning, the convolutional neural network model has substantial advantages in automatic feature extraction in EEG-based emotion re...
Autores principales: | Su, Yun, Zhang, Zhixuan, Li, Xuan, Zhang, Bingtao, Ma, Huifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420984/ https://www.ncbi.nlm.nih.gov/pubmed/36046470 http://dx.doi.org/10.3389/fnins.2022.872311 |
Ejemplares similares
-
Electroencephalogram Emotion Recognition Based on 3D Feature Fusion and Convolutional Autoencoder
por: An, Yanling, et al.
Publicado: (2021) -
Electroencephalogram Access for Emotion Recognition Based on a Deep Hybrid Network
por: Zhong, Qinghua, et al.
Publicado: (2020) -
Electroencephalogram signals emotion recognition based on convolutional neural network-recurrent neural network framework with channel-temporal attention mechanism for older adults
por: Jiang, Lei, et al.
Publicado: (2022) -
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
por: Zhang, Pengwei, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021)