Cargando…
Using expression quantitative trait loci data and graph-embedded neural networks to uncover genotype–phenotype interactions
Motivation: A central goal of current biology is to establish a complete functional link between the genotype and phenotype, known as the so-called genotype–phenotype map. With the continuous development of high-throughput technology and the decline in sequencing costs, multi-omics analysis has beco...
Autores principales: | Guo, Xinpeng, Han, Jinyu, Song, Yafei, Yin, Zhilei, Liu, Shuaichen, Shang, Xuequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421127/ https://www.ncbi.nlm.nih.gov/pubmed/36046233 http://dx.doi.org/10.3389/fgene.2022.921775 |
Ejemplares similares
-
Linking genotype to phenotype in multi-omics data of small sample
por: Guo, Xinpeng, et al.
Publicado: (2021) -
Quantitative Trait Loci Mapping for Lameness Associated Phenotypes in Holstein–Friesian Dairy Cattle
por: Sánchez-Molano, Enrique, et al.
Publicado: (2019) -
Quantitative Trait Loci Mapping
por: Grisel, Judith E., et al.
Publicado: (1995) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
por: Zhang, Yuanyuan, et al.
Publicado: (2021)