Cargando…
MLACP 2.0: An updated machine learning tool for anticancer peptide prediction
Anticancer peptides are emerging anticancer drug that offers fewer side effects and is more effective than chemotherapy and targeted therapy. Predicting anticancer peptides from sequence information is one of the most challenging tasks in immunoinformatics. In the past ten years, machine learning-ba...
Autores principales: | Thi Phan, Le, Woo Park, Hyun, Pitti, Thejkiran, Madhavan, Thirumurthy, Jeon, Young-Jun, Manavalan, Balachandran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421197/ https://www.ncbi.nlm.nih.gov/pubmed/36051870 http://dx.doi.org/10.1016/j.csbj.2022.07.043 |
Ejemplares similares
-
MLACP: machine-learning-based prediction of anticancer peptides
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides
por: Boopathi, Vinothini, et al.
Publicado: (2019) -
Molecular Evolution of the Neuropeptide S Receptor
por: Pitti, Thejkiran, et al.
Publicado: (2012) -
Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2
por: Manavalan, Balachandran, et al.
Publicado: (2021) -
DRAMP 2.0, an updated data repository of antimicrobial peptides
por: Kang, Xinyue, et al.
Publicado: (2019)