Cargando…
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
Discovery of potential drugs requires rapid and precise identification of drug targets. Although traditional experimental methodologies can accurately identify drug targets, they are time-consuming and inappropriate for high-throughput screening. Computational approaches based on machine learning (M...
Autores principales: | Charoenkwan, Phasit, Schaduangrat, Nalini, Lio’, Pietro, Moni, Mohammad Ali, Shoombuatong, Watshara, Manavalan, Balachandran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421381/ https://www.ncbi.nlm.nih.gov/pubmed/36046193 http://dx.doi.org/10.1016/j.isci.2022.104883 |
Ejemplares similares
-
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy
por: Schaduangrat, Nalini, et al.
Publicado: (2022) -
TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023) -
iAMAP-SCM: A Novel
Computational Tool for Large-Scale
Identification of Antimalarial Peptides Using Estimated Propensity
Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022)